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a b s t r a c t

Inspired by the wavefunction forms of exactly solvable algebraic Hamiltonians, we present several wave-
function ansatze. These wavefunction forms are exact for two-electron systems; they are size consistent;
they include the (generalized) antisymmetrized geminal power, the antisymmetrized product of strongly
orthogonal geminals, and a Slater determinant wavefunctions as special cases. The number of parameters
in these wavefunctions grows only linearly with the size of the system. The parameters in the wavefunc-
tions can be determined by projecting the Schrödinger equation against a test-set of Slater determinants;
the resulting set of nonlinear equations is reminiscent of coupled-cluster theory, and can be solved with
no greater than O (N5) scaling if all electrons are assumed to be paired, and with O (N6) scaling otherwise.
Based on the analogy to coupled-cluster theory, methods for computing spectroscopic properties, molec-
ular forces, and response properties are proposed.

� 2012 Elsevier B.V. All rights reserved.

1. Motivation

Modern quantum chemistry, at both the conceptual and com-
putational levels, is dominated by the orbital paradigm [1,2]. For
example, most of our understanding of chemical processes is based
on molecular orbital theory, in which electrons are assigned to
occupied orbitals, while virtual (unoccupied) orbitals are accessible
by electronic excitation. The wavefunction that corresponds to this
conceptual framework is a single Slater determinant.

Slater determinants are the foundation for all of the most pop-
ular methods in computational quantum chemistry [2,3]. In some
methods (Hartree–Fock, Kohn–Sham density functional theory),
the wavefunction is a single Slater determinant. Other methods at-
tempt to add corrections to the Slater determinant picture, typi-
cally by including excited-state electron configurations
(configuration interaction, coupled-cluster). These approaches
tend to fail for systems where the Slater determinant is a bad start-
ing point for approximating the true wavefunction unless an expo-
nential number of excited-state configurations are included. Such
systems are said to be strongly correlated [4].

When electrons are strongly correlated, the orbital picture breaks
down: it is no longer useful, either conceptually or computationally,
to classify orbitals as occupied or unoccupied. However, practical
and simple forms for the wavefunction may still exist. A classic
example of a strongly-correlated system is a superconductor, and
while a simple wavefunction built from orbitals is not appropriate,
a simple wavefunction built from Cooper pairs (geminals) is [5].

The purpose of this paper is to present families of wavefunctions
that are appropriate for both strongly-correlated and weakly-corre-
lated electronic materials. The forms we propose are still mean-field
models in the sense that the number of parameters in the wavefunc-
tion grows linearly with the size of the system. However, the wave-
function forms are based on antisymmetrized products of
nonorthogonal geminals. In these models, it is the pairs of electrons
that are weakly correlated to each other, not electrons themselves.

Unfortunately, the equations for determining wavefunctions
built from antisymmetrized products of nonorthogonal geminals
are computationally intractable. To circumvent this problem, many
authors have imposed orthogonality restrictions on the geminals
[6,7]. Our approach is different: in Section 2. A we will present a
special mathematical structure; when the nonorthogonal geminals
have this structure the wavefunction is said to be an antisymmet-
rized product of rank-two geminals (APr2Gs), and the equations for
determining the wavefunction are computationally tractable (Sec-
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tion 2.3). The APr2G form was inspired by the eigenfunctions of the
Richardson Hamiltonian, which can be determined by a Bethe an-
satz (Section 3.1) [8,9].

The APr2G wavefunction requires each electron to be paired (al-
beit not necessarily to an electron with the opposite spin); it is
associated with glð2;CÞ: the general linear algebra of degree 2 on
the field of complex numbers, the set of complex 2 � 2 matrices.
In Sections 3.2,3.3,3.4, wavefunctions that are appropriate for sys-
tems with unpaired electrons are derived by considering algebras
of higher degree, glðnjkÞ. glðnjkÞ is the general linear algebra acting
on n bosonic states (integer spin) and k fermionic (half-integer
spin) states.

Methods for computing properties from these wavefunctions
are proposed in Section 4; these methods are similar to those in
coupled cluster theory. Section 5 provides a summary of the main
results in the paper. Readers who are primarily interested in the
key results may safely skip Section 3, which is focused on the
mathematical tools needed to derive the results in Section 2 and
extend them to systems with unpaired electrons.

2. Pairing Models for the Wavefunction; glð2;CÞ

2.1. Pairing models

The Slater determinant is an antisymmetrized product of one-
electron wavefunctions, called spin–orbitals. When this model is
not appropriate, the next simplest model is an antisymmetrized
product of two-electron wavefunctions, called geminals. In second
quantization, the operator for creating an electron pair is

bGyp ¼X2K

i;j¼1

cij;payj a
y
i ð1Þ

with cij = �cji. Throughout this paper, K denotes the number of spa-
tial basis functions. By a suitable unitary transformation of the
spin–orbital basis [6,10], the pair-creation operator may be rewrit-
ten as a sum over pairs of spin–orbitals,

bGyp ¼XK

i¼1

ci;pay2ia
y
2i�1 ¼

XK

i¼1

ci;payi a
y
�i

ð2Þ

This is typically called the ‘‘diagonal’’ or ‘‘natural’’ form for the gem-
inal. Typically the spin–orbitals indexed with i and �i are the a- and
b-spin forms of the same spatial orbital; when this is not true, one is
using broken-symmetry geminals [11,12]. (Obviously this is not
true if the geminal is not a singlet. However, we will not even re-
quire that the geminal is a spin eigenfunction.) Hereafter, we will
use the word ‘‘orbital’’ to refer to a spin–orbital.

The wavefunction ansatz we choose is an antisymmetric prod-
uct of P geminals,

jWi ¼
YP

q¼1

Gyqjhi ¼
XK

i1¼1

ci1 ;1ayi1 ay�i1

 ! XK

i2¼1

ci2 ;2ayi2 ay�i2

 !
� � �

XK

iP¼1

ciP ;PayiP ay�iP

 !
jhi ð3Þ

where P is the number of electron pairs and where jhi denotes the
vacuum state. The vacuum state does not need to be the physical
vacuum, only a vacuum with respect to the creation of geminals.
For example, one can use a model wavefunction like this only in a
small active space by choosing a many-electron vacuum state.
States with an odd number of electrons can be treated quite simply
by using a one-electron state as the vacuum.

In the 1970s, an alternative form of antisymmetrized product of
geminals, based on the antisymmetrized product of N(N � 1)/2 pair
functions, was proposed by Silver and explored by Náray-Szabó
[13–15]. This ‘‘all pairs’’ wavefunction does not seem to lend itself
to the type of analysis performed here. For example, in the all-pair
wavefunction, the pair functions are defined in the Banach space
L2ðN�1Þ, which means that a second-quantized description is proba-
bly extremely difficult. (Banach spaces are not self-dual, so the cre-
ation operators would act on L2ðN�1Þ, while the annihilation
operators would act on Lð2N�2Þ=ð2N�3Þ.)

Eq. (3) is an antisymmetrized product of nonorthogonal gemi-
nals. It is not the most general possible form, however, because all
the geminals share the same pairing scheme for the orbitals (i.e.,
the same unitary transformation converts the mathematical form
in Eq. (1) to the form in Eq. (2) for all the geminals, p = 1, 2, . . . , P).
Without this assumption, geminal product theories are very compli-
cated mathematically and very expensive computationally [16,17].

The wavefunction in Eq. (3) can be expanded in terms of Slater
determinants,

jWi ¼
X
½fPigP �

/½fPigP � ĝy1
� �P1 ĝy2

� �P2 � � � ĝyK
� �PK jhi ð4Þ

where

ĝyi ¼ ayi a
y
�i

ð5Þ

generates an electron in the ith set of paired orbitals and the nota-
tion [{Pi}P] indicates that the sum runs over all possible ways of par-
titioning P pairs of electrons into the K pairs of orbitals,

XK

i¼1

Pi ¼ P 0 6 Pi: ð6Þ

The expansion coefficient is

/½fPigP � ¼
1

P1!P2! � � � PK !
jC½fPigP �j

þ ð7Þ

where jCj+ denotes the permanent of C. The C matrix has the coef-
ficients of each Gyq listed in the rows and the columns lists the coef-
ficients of ĝyi , each of which appears Pi times,

ð8Þ
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