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a b s t r a c t

In this work, we propose a self-consistent minimization procedure for functionals in reduced density
matrix functional theory. We introduce an effective noninteracting system at finite temperature which
is capable of reproducing the groundstate one-reduced density matrix of an interacting system at zero
temperature. By introducing the concept of a temperature tensor the minimization with respect to the
occupation numbers is shown to be greatly improved.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Since 1964, after the pioneering work of Hohenberg and Kohn
[1], density functional theory (DFT) became the standard tool for
the calculation of groundstate (gs) properties of quantum-
mechanical systems. There are, however, some physical problems
which are difficult to address in the framework of DFT. These in-
clude the description of strongly correlated systems, such as the
dissociation of closed shell molecules into open shell fragments,
and the fundamental gap in Mott insulators. Recently, a promising
alternative to DFT was introduced which showed success in
various fields, ranging from small molecules [2–9] to infinite solids
[10–12], including the difficult cases mentioned above. This
method features the one-reduced density matrix (1RDM) as central
variable and is called reduced density matrix functional theory
(RDMFT). In the theoretical framework of RDMFT, the functional
form of the kinetic as well as of the exchange energy are known
exactly in terms of the 1RDM and only the correlation part of the
two-particle interaction energy has to be approximated. However,
a minimization of functionals in RDMFT is complicated by the fact
that at zero temperature there is no noninteracting system repro-
ducing the 1RDM of the interacting system. This is in contrast to
DFT where the Kohn–Sham system [13] allows for an efficient
self-consistent minimization. Therefore, in RDMFT one usually
resorts to direct minimization routines.

In the present work, we show that one can indeed construct a
noninteracting system which reproduces a given 1RDM to arbi-
trary accuracy, if one considers this system to be in grand canoncial
equilibrium at finite temperature. We therefore effectively model a
zero-temperature interacting system by a finite-temperature non-
interacting one. This allows one to construct a self-consistent
Kohn–Sham minimization scheme for functionals in RDMFT.

Capitalizing on the freedom of choice for the temperature of the
Kohn–Sham system, we will furthermore introduce the concept of
a temperature tensor. This concept will later on be shown to
greatly improve the performance of our minimization procedure.

We will then argue, why the energy value in a numerical
minimization of a RDMFT functional is not a good measure of con-
vergence. As alternatives we introduce two convergence measures
which rely solely on the functional derivative of the RDMFT
functional w.r.t. the 1RDM.

Finally, we will investigate the performance of the new minimi-
zation scheme by applying a common RDMFT functional to LiH. It
will be shown that the self-consistent scheme is very efficient and
avoids conceptual difficulties prevalent in many other minimiza-
tion procedures.

2. Theoretical foundations

In this work, we will consider systems governed by a Hamilto-
nian bH consisting of the kinetic energy bT , the external one-particle
potential V, and the two-particle interaction cW :bH ¼ bT þ bV þ cW : ð1Þ
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A quantum-mechanical system is generally described by a sta-
tistical density operator (SDO) bD being a weighted sum of projec-
tion operators on the Hilbert space under considerationbD ¼X

i

wijWiihWij; wi P 0;
X

i

wi ¼ 1: ð2Þ

The 1RDM c(x, x0), corresponding to a particular SDO bD, is de-
fined as

cðx; x0Þ ¼ trfbDŵþðx0ÞŵðxÞg; ð3Þ

where fbwðxÞg are the common field operators and the variable x de-
notes a combination of spacial coordinate r and spin index r (x = (r,
r)). An integration over x is therefore to be interpreted as an inte-
gration over r and a summation over r. By construction, c(x, x0) is
hermitean and can therefore be written in spectral representation

cðx; x0Þ ¼
X

i

ni/
�
i ðx0Þ/iðxÞ: ð4Þ

The {/i(x)} are traditionally called the natural orbitals (NOs) and
the {ni} are the occupation numbers (ONs) [14]. The conditions that
ensure that a given c(x, x0) is ensemble-N-representable, i.e. that it
comes from a SDO of the form of Eq. (2), are the following [15]:

0 6 ni 6 1; ð5ÞX
i

ni ¼ N; ð6Þ

f/ig is a complete orthonormal set: ð7Þ

The set of all ensemble-N-representable 1RDMs is given by

CN ¼ fcðx; x0Þjcðx; x0Þ fulfills Eqs:ð5Þ; ð6Þ; and ð7Þg; ð8Þ

which is closed and convex.
Following from the theorems of Hohenberg and Kohn [1], we

know that one can formulate a functional theory of the 1RDM for
the determination of the gs energy. It was Gilbert [16] who showed
that this theoretical framework is also capable of describing sys-
tems subject to nonlocal external potentials, a task not possible
via DFT. We have furthermore shown in [17] that this methodology
can be extended to the case of quantum-mechanical systems in
grand canonical equilibrium.

The functional for the energy E[c] of the interacting and for the
grand potential X0[c] of a noninteracting system in grand canoni-
cal equilibrium are given as

E½c� ¼ T½c� þ Vext½c� þW½c�; ð9Þ
X0½c� ¼ T½c� þ Vext½c� � lN½c� � 1=bS0½c�; ð10Þ

where

T½c� ¼
Z

dx0lim
x!x0

�r
2

2

 !
cðx0; xÞ ð11Þ

Vext½c� ¼
Z

dxdx0vextðx; x0Þcðx0; xÞ ð12Þ

N½c� ¼
Z

dxcðx; xÞ ð13Þ

S0½c� ¼ �
X

i

ðni ln ni þ ð1� niÞ lnð1� niÞÞ: ð14Þ

The functional W[c] for the interaction contribution is not
known exactly and has to be approximated in practice. The nonin-
teracting grand potential can be written solely in terms of the one-
particle eigenenergies and the ONs as

X0½c� ¼
X

i

niðei � lÞ þ 1
b
ðni ln ni þ ð1� niÞ lnð1� niÞÞ

� �
: ð15Þ

In the context of this work, the question of noninteracting (ni)-V-
representability, i.e. the question which 1RDMs correspond to a

groundstate or equilibrium of a noninteracting system, will become
important. The sets of all zero-temperature ni-V-representable and
finite-temperature ni-V-representable 1RDMs will be denoted by CV

0

and CV
T , respectively. In the case of zero temperature a nondegener-

ate system assumes a pure groundstate and the corresponding
noninteracting 1RDM will be idempotent. Therefore, CV

0 is on the
boundary of CN. We have shown in [17] that the gs-1RDM of a
Coulomb system is in the interior of CN and, therefore, we cannot
use a noninteracting system at zero temperature to find the
minimum of an RDMFT functional. In simple terms: the 1RDM of
interacting particles is never idempotent and, hence, it cannot be
represented as the 1RDM of a Kohn–Sham-type noninteracting
system at zero temperature. At finite temperature, however, for a
noninteracting system with one-particle eigenvalues {ei}, the ONs
are given by the Fermi–Dirac distribution [18] which can easily be
inverted:

ni ¼
1

ebðei�lÞ þ 1
; ð16Þ

ei � l ¼ 1
b

ln
1� ni

ni

� �
: ð17Þ

This implies that all 1RDMs in the interior of CN are in CV
T .

Therefore, for every 1RDM in CN there is a 1RDM from CV
T arbi-

trarily close to it which allows the utilization of a noninteracting
system in grand canonical equilibrium in a self-consistent minimi-
zation scheme. We emphasize the term ‘‘arbitrarily close’’ because
pinned ONs (i.e. 0 or 1) cannot be reproduced by a system at finite
temperature (see Eq. (17)), but every ON arbitrarily close to 0 or 1
can. The error introduced by these pinned states therefore becomes
arbitrarily small.

3. Self-consistent minimization

The biggest stumbling stone in the numerical minimization of
RDMFT functionals is the incorporation of the auxiliary constraints
on the ONs and NOs of the 1RDM. These are particle number con-
servation

P
ni ¼ N, the fermionic constraint 0 6 ni 6 1, and most

importantly, the orthonormality constraints of the NOs. Usually,
the orthonormality of the NOs will be enforced by applying an ort-
honomalization algorithm to the NOs after they have been modi-
fied, using the information provided by the functional derivatives
dE[c]/d/i. These orthonormalization procedures can change several
orbitals quite significantly which can lead to a slow convergence of
the minimization routines.

The main idea of a self-consistent minimization scheme is now
to approximate the energy surface E[c] by a simpler one whose
minimum, incorporating all auxiliary constraints, can be found
easily. In our situation, we take the information about the deriva-
tives of E[c] at c and construct an effective noninteracting system
in grand canonical equilibrium whose grand potential functional
X0[c] has the same functional derivative in c. The minimum of this
energy surface is found by a diagonalization of the effective
Hamiltonian and an occupation of the new ONs according to the
Fermi–Dirac distribution. The resulting eq-1RDM will then serve
as the starting point for the subsequent iteration. This method
automatically incorporates the constraints on the ONs and NOs
and we will not have to apply subsequent orthonormalizations
and the like. The success of this scheme, of course, relies on the
similarity of the energy surfaces of E[c] and X0[c].

We will now proceed to derive the variational equations, guid-
ing the determination of c.

3.1. Effective Hamiltonian

The effective noninteracting system is constructed such that
the derivatives of the interacting as well as of the noninteracting
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