
Invited paper

Digital implementation of a virtual insect trained by spike-timing
dependent plasticity$

P. Mazumder a,n, D. Hu a, I. Ebong a, X. Zhang b, Z. Xu b, S. Ferrari b

a University of Michigan, Ann Arbor, MI 48109, USA
b Duke University, Durham, NC 27708, USA

a r t i c l e i n f o

Article history:
Received 25 June 2015
Accepted 18 January 2016
Available online 13 February 2016

Keywords:
Spike timing dependent plasticity
Neural network

a b s t r a c t

Neural network approach to processing have been shown successful and efficient in numerous real world
applications. The most successful of this approach are implemented in software but in order to achieve
real-time processing similar to that of biological neural networks, hardware implementations of these
networks need to be continually improved. This work presents a spiking neural network (SNN) imple-
mented in digital CMOS. The SNN is constructed based on an indirect training algorithm that utilizes
spike-timing dependent plasticity (STDP). The SNN is validated by using its outputs to control the motion
of a virtual insect. The indirect training algorithm is used to train the SNN to navigate through a terrain
with obstacles. The indirect approach is more appropriate for nanoscale CMOS implementation synaptic
training since it is getting more difficult to perfectly control matching in CMOS circuits.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The neural network approach to data processing has undergone
continued research and development even with the widespread
success of the von Neumann architecture, traditionally sequential
in nature. Recent widespread advancement of the von Neumann
architecture to utilize multi-core processors [2] is similar to the
neural network approach, providing a much needed boost to the
area. The difference between the parallelism of multi-core pro-
cessors and that of neural networks is the latter uses much less
complex processing elements, therefore, allowing opportunities
for massively parallel structures. Hardware neural networks or
neuromorphic circuits have been around for quite some time with
proposals that span both digital CMOS and analog CMOS approa-
ches [3–6]. Specific VLSI reviews and methodologies are provided
in [7,8]. Although neural hardware have been proposed, imple-
mented, and commercialized, their widespread adoption is still
unrealized. Neural software implementations running on digital
computers are much more prevalent, leaving hardware adoption
behind. Hardware implementations have found niche uses in
peripheral devices and various subsystems [3]. Software

implementations have the advantage of ease of programming
through well-known languages like C and Cþþ , large software
engineering support due to a lower barrier of entry for software
engineers than those for hardware engineers, high precision cal-
culations if the processing capabilities are present, and more
flexibility regarding the implemented algorithm. Even with these
advantages, hardware implementations are still sought after
because of the speed associated with hardware computing; reali-
zation of adequate neural processors or neurocomputers will
enable applications that require real-time processing, feedback,
and learning. The most promising implementations use the digital
components and have granted programmable neurocomputers
like CNAPS [9] and SYNAPSE-1 [10]. Although neurocomputers are
very powerful, efforts have been made to scale down applications
to even less powerful machines, ones that run on battery and do
not rely on a large number of processing elements. These efforts
have led to the widespread appeal of spiking neural networks
[4,11–15].

Spiking neural network (SNN) implementations provide a
powerful computation fabric where a smaller number of proces-
sing elements can potentially be utilized in order to realize desired
functionality. When working with SNN implementations, usually
the designer provides different, specified goals during design
phase. The goals determine the level of detail needed when
designing the neuron and synapse behavior. Hardware neural
networks have been used to study different phenomena in biolo-
gical neural networks. This has brought about different neuron
models with their hardware implementations. Hardware neural
networks seek to be simple in functionality in order to minimize

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/vlsi

INTEGRATION, the VLSI journal

http://dx.doi.org/10.1016/j.vlsi.2016.01.002
0167-9260/& 2016 Elsevier B.V. All rights reserved.

☆This work was supported by the National Science Foundation under ECCS Grant
1059177 and CCF Grant 1421467.

n Corresponding author.
E-mail addresses: pinakimazum@gmail.com (P. Mazumder),

hudi@umich.edu (D. Hu), idong@eecs.umich.edu (I. Ebong),
xz70@duke.edu (X. Zhang), dec.ziyer@gmail.com (Z. Xu),
sferrari@duke.edu (S. Ferrari).

INTEGRATION, the VLSI journal 54 (2016) 109–117

www.sciencedirect.com/science/journal/01679260
www.elsevier.com/locate/vlsi
http://dx.doi.org/10.1016/j.vlsi.2016.01.002
http://dx.doi.org/10.1016/j.vlsi.2016.01.002
http://dx.doi.org/10.1016/j.vlsi.2016.01.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2016.01.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2016.01.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2016.01.002&domain=pdf
mailto:pinakimazum@gmail.com
mailto:hudi@umich.edu
mailto:idong@eecs.umich.edu
mailto:xz70@duke.edu
mailto:dec.ziyer@gmail.com
mailto:sferrari@duke.edu
http://dx.doi.org/10.1016/j.vlsi.2016.01.002


the area associated with this processing element. This brings
about the massive tradeoff between complex models like the
Hodgkin–Huxley and the leaky integrate and fire (LIF) [15]. Since
SNN solutions require numerical solutions with no closed form
representations, their behavior in hardware is much harder to
predict. Therefore, learning algorithms tenable to hardware
adoption are crucial to pushing widespread SNN adoption. Soft-
ware SNN implementations are widespread; hardware imple-
mentations need to catch up, hence the thrust behind this work.
The contributions in this paper are: abstraction and mapping of a
complex learning process to a digital spiking neural network
fabric. A digital approach is used in order to encourage repeat-
ability when dealing with complex SNNs. A virtual bug example is
used to illustrate the strength of this algorithm. Section 2 will
provide details on the model of the virtual insect. Section 3 will
expand on the specific example by showing top level neural net-
work organization, the training algorithm, and the CMOS circuit
adaptation. Section 4 will provide simulation results and discus-
sion, and Section 5 relays some concluding remarks.

2. Virtual insect model

The test setup and scenario chosen is a virtual insect (bug)
model. The virtual insect model is constructed to demonstrate and
evaluate the indirect training algorithm [1] and hardware-level
rapid prototyping design. Offline training with limited information
is adopted for the chosen application. After training the virtual
insect, the virtual insect is used in a homing application where it is
used to find a given target on a two-dimensional space with
obstacles.

The virtual insect is a moniker based on the given construct in
Fig. 1, since the sensors are attached to the body like antennae on a
biological insect. The virtual insect is modeled as a rigid object that
can move in any direction on a map. Fig. 1 shows the external
structure and environment of the virtual insect. The environment
of the virtual bug consists of obstacles which are denoted as black
objects and a target which is denoted as a bright spot on the map.
The virtual bug has four sensors which provide terrain and target
information. The bug has an elliptical shape and is symmetric
along its major axis. On each symmetric half, a target sensor, a
terrain sensor, and a motor is modeled. By convention, the labels
for these sensors and motors are either “Left” or “Right,”
depending on which half they reside as depicted in Fig. 1.

The target sensor generates a signal Starget based on the distance
between the sensor and the target. By convention, the further the
virtual insect is from the target, the higher the magnitude or
intensity of Starget . The terrain sensor generates a signal Sterrain
based on the roughness of the map, with a rougher map corre-
sponding to a more intense or higher magnitude of Sterrain. The two

motors effect the direct motion of the insect. Intuitively, if the left
motor has a higher revolutions per minute (rpm) compared to the
right motor, the insect will turn right. The insect turns left if the
right motor rotates faster than the left motor. If the two motors
have the same rpm, then the virtual insect will move forward in its
direction of orientation. The motion of the virtual insect is
restricted in that its motors are allowed to rotate in only one
direction. Therefore, the insect is incapable of reversing (moving
opposite its oriented direction). If the insect needs to follow the
direction opposite its direction of orientation, it will need to turn
towards that direction then move forward.

Since virtual insect motion is determined by both the relative
angular velocities of the two motors and the current sensor inputs
regarding proximity to obstacles and the target, the internal con-
nection between the sensors and the motors is described.

When the insect moves in the prescribed environment, its
motion can be described by (1), adapted from the modified uni-
cycle robot locomotion in [16,,1]. By restricting the environment to
a 2D Cartesian plane, when the insect moves, its linear velocity can
be described as v. v can be decomposed into components in both
the x-direction and y-direction, denoted in (1) as vx and vy,
respectively. vleft and vright are the speeds of the left and right
motors, respectively. θ is the variable used to represent direction
of orientation and is defined as the angle between the major axis
of the elliptical insect and the x-axis. L, τmotor and η are scaling
constants; and tfL and tfR are the firing times of output neurons
(more on this later).

vx ¼ v� cos θ
� �

vy ¼ v� sin θ
� �

v¼ vleft þvright
2

Δθ¼ vright �vleft
L

Δvleft ¼ � vL
τmotor

þη � t ¼ ¼ tfL
� �

Δvright ¼ � vR
τmotor

þη � t ¼ ¼ tfR
� �

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1Þ

According to (1), Δvleft and Δvright are always negative and
become positive only when t ¼ tfL or when t ¼ tfR, respectively. This
translates to a motor's rpm, vleft or vright , is always decreasing
unless its corresponding output neuron spikes. Therefore, the
more frequently an output neuron fires or spikes, the faster the
speed of the corresponding motor. The next section will elucidate
the connections between the output neurons and how its spiking
events are controlled. Essentially, the dependence on the firing
frequency of an output neuron on the synaptic weights of the
neural network reduces the training of the virtual insect to weight
parameter adjustment.

3. Spike-based training approach

3.1. Top level NN organization

In the previous discussion, the control of the motors was due to
a spiking pattern of the outputs of some neural network. This
section provides the top level architecture and inherent con-
nectivity of the spiking neural network (SNN) controlling the
motors. The SNN architecture (illustrated in Fig. 2) resembles a
feedforward neural network with an input layer, a hidden layer
and an output layer. The input layer interfaces with the four sensor
inputs while the output layer interfaces with the two motors. The
two output layers are shown as separate entities to make clear
there is no interconnectivity between the two layers. Additionally,
the structure of the SNN is flexible (i.e. each layer can have any
number of neurons and can be of any shape, and the connectionsFig. 1. External structure of the virtual insect.

P. Mazumder et al. / INTEGRATION, the VLSI journal 54 (2016) 109–117110



Download English Version:

https://daneshyari.com/en/article/539443

Download Persian Version:

https://daneshyari.com/article/539443

Daneshyari.com

https://daneshyari.com/en/article/539443
https://daneshyari.com/article/539443
https://daneshyari.com

