
Fast and accurate FPGA-based framework for processor architecture
vulnerability analysis

Hoda Mahdiani, Saeed Safari, Mostafa E. Salehi n

School of Electrical and Computer Engineering, University of Tehran, Tehran 14395-515, Iran

a r t i c l e i n f o

Article history:
Received 7 June 2015
Received in revised form
25 November 2015
Accepted 25 November 2015
Available online 2 December 2015

Keywords:
Architecture Vulnerability analysis
Soft error
Embedded processors
Fault modeling and emulation
Field-programmable gate array

a b s t r a c t

This paper presents a fast, accurate, and flexible FPGA-based fault emulation platform, namely FARAVAM
that can be exploited for AVF analysis in modern microprocessors. The proposed approach provides fault
injection capabilities supporting automatic modification of post-synthesis net-lists and introduces a
highly controllable and observable transient fault analysis environment. The presented vulnerability
analysis platform using both exhaustive and random fault emulation approaches, provides useful
information for identifying areas threatening reliability to make processors more fault tolerant. We
applied our platform for extracting the best trade-offs between precision and speed up in vulnerability
analysis of MIPS processor. The experimental results indicate that in addition to having high precision we
obtain about seven orders of magnitude speed up in comparison with simulation based vulnerability
analysis techniques.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Reliability as well as correctness of operations are significant
considerations in the design and verification of modern computer
systems and advanced microprocessors. While on the other hand,
soft errors are among the most effective factors in reducing system
reliability. A soft error is caused by a transient pulse that changes
the logical state of a vulnerable semiconductor device. This tran-
sient pulse might be created by a high energy particle hitting to
some critical points of a circuit, or by others factors such as voltage
drops in power supply network, temperature fluctuations, and
gate length and doping concentration variations [1–3]. While both
of the combinational and sequential logic elements of a micro-
processor are vulnerable to soft errors, the AVF factor for a specific
hardware structure is defined as the probability of a soft fault
leading to an architecturally observable error and changing the
output of the running program [4].

AVF analysis of a digital VLSI chip is very important for
understanding the behavior of the system in terms of reliability
and fault masking capabilities. Therefore, various categories of AVF
measurement and analysis methods are presented in hardware
structures and microprocessor systems. These methods can be
generally classified into two categories of static and dynamic
approaches. In static methods, it is not necessary to simulate the

processor behavior in runtime. Instead, only some statically
defined properties of a system are used to estimate the AVF of a
hardware structure. In dynamic methods, some extracted infor-
mation is needed for AVF analysis through simulation of processor
operations in runtime [6]. In another classification, AVF analysis
methods can be divided into three classes of analytical models,
performance models and statistical fault injection mechanisms [7].

Analytical models calculate AVF using the average number of
architecturally correct execution (ACE) bits in a hardware structure
[4,5] and [7]. This method is not accurate but is fast and practical
and so can be used in early stages of design when an RTL model is
not available. Performance models use some defined rules to
estimate AVF based on the fraction of time that a bit in the
structure is ACE or Un_ACE in its life time [4,5] and [8]. This
technique is fast and can compute the AVFs of many structures in
parallel while its main drawback is that it requires sufficient
details about architecture and microarchitecture of the circuit
under analysis.

AVF extraction using fault injection techniques is the most
widely accepted and adopted approach in various fields of relia-
bility analysis and circuit testing. In this method, some randomly
generated bit flips are injected to RTL or gate-level designs when
the workload execution is in progress [9–11]. The propagation of
this error to the outputs of the circuit is then observed. In this case,
AVF is calculated as the ratio of the number of observed mis-
matches (between outputs of faulty and golden models of design)
to the total number of injected faults [6].

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/vlsi

INTEGRATION, the VLSI journal

http://dx.doi.org/10.1016/j.vlsi.2015.11.005
0167-9260/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: hoda.mahdiani@ut.ac.ir (H. Mahdiani),

saeed@ut.ac.ir (S. Safari), mersali@ut.ac.ir (M.E. Salehi).

INTEGRATION, the VLSI journal 53 (2016) 14–26

www.sciencedirect.com/science/journal/01679260
www.elsevier.com/locate/vlsi
http://dx.doi.org/10.1016/j.vlsi.2015.11.005
http://dx.doi.org/10.1016/j.vlsi.2015.11.005
http://dx.doi.org/10.1016/j.vlsi.2015.11.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2015.11.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2015.11.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2015.11.005&domain=pdf
mailto:hoda.mahdiani@ut.ac.ir
mailto:saeed@ut.ac.ir
mailto:mersali@ut.ac.ir
http://dx.doi.org/10.1016/j.vlsi.2015.11.005


Literature survey in the domain of fault injection determines that
these techniques are classified in hardware, software, simulation-
based and emulation-based fault injection methods [12–15].

In hardware based methods faults are imposed to the actual
structure of system under test by artificially generating some
disturbing environmental parameters [10], and [16–19]. The speed
of experiments in actual situation is very fast but in these methods
controllability and observability of fault propagation to internal
parts of a circuit is limited. Also the main circuit may be damaged.

In software based methods faults are injected in software level
and memories of design. These software faults can be the impact
of hardware faults [20–23]. These methods are low cost because
no hardware is required for fault injection and they do not have
any effect on the main circuit. However, the ability of control and
observation of hardware fault effects are dependent on the
amount of software access to hardware.

Simulation based techniques are those that fault injection is
done in HDL description of a hardware structure during the
simulation of its behavior [14,24–28]. These methods are applic-
able in every phase of the system generation and provide good
controllability and observability of internal circuit points. How-
ever, the simulation of these fault injection experiments is very
time consuming.

The other approach that attracts fault injection studies in
recent years includes methods based on using FPGAs and their
facilities which are called FPGA-based techniques. In these meth-
ods, faults are injected to the implemented circuit structure on an
FPGA chip. These techniques support the flexibility and high ability
of simulation based methods in the field of fault injection control
and observation, whereas they have the efficiency and speed of
hardware based techniques [26,29–39]. These methods can be
used in every phase of the system design and can contribute in
removing the bugs of designed system before manufacturing the
original plan. In other words, a designer can perceive the behavior
of a system in actual situations whereas these approaches will not
harm the physical implemented instances of the designed systems
and hence, reducing the cost of fault injection experiments.

In previous studies FPGA-based fault injections were mostly
used in permanent stuck at fault injections in digital systems for
generating a suitable set of test vectors for developing circuit test
capabilities [29,36]. However, the injection of transient faults
during operational mode of the systems and estimation of the
system vulnerability and fault tolerance with FPGA-based methods
are added to recent studies [34,35,37–40].

In this paper we develop a framework consisting of a tool chain
for AVF analysis of embedded processors by design and imple-
mentation of a dynamic platform for transient fault emulation
using the facilities of FPGA-based methods.

The reminder of this paper is organized as follows. Section 2
describes the fault model of the represented fault emulation
platform. In Section 3 the emulation platform and the proposed
framework for processor AVF analysis are described. Then
experimental results are presented in Section 4 and Section 5
concludes the paper.

2. Fault model

Our presented platform has the ability of injecting different
types of faults such as transient and permanent stuck-at faults.
However, the contribution of this paper is the method of mea-
suring the architectural vulnerability of microprocessor structures.
Since models of permanent faults are simpler than transient faults,
we will focus on transient faults as the basic model and other fault
models are just mentioned.

Our approach belongs to the category of instrumentation-based
methods. These types of methods are popular in both fault simu-
lation and fault emulation frameworks and can be applied in dif-
ferent abstraction levels such as RTL or gate. The key concept is
that a saboteur element is added to the target component or signal
in order to emulate fault injection. On the other hand, a custom
fault injector component simulates the behavior of fault model on
the victim signal of the structure whereas the fault injector com-
ponent is inactive when the fault free functionality of system
under evaluation is expected.

To achieve higher controllability, observability, and accuracy,
fault injector elements are inserted in post-synthesis ASIC net-list
of the CPU circuit by using a parser. The parser is developed for
automatically annotating and replacing all basic gate level com-
ponents of CPU net-list with new cells. These new cells support all
functionalities of the basic cells in addition to having an extra
input signal which controls fault injection to cell outputs in every
cycle of processor operation.

As shown in Fig. 1, for transient faults the output of the basic
cell is XORed with the logic of control signal for flipping the
selected victim signal of the CPU. Bit flip is the most commonly
used technique for modeling transient faults in literature. For
permanent stuck at 1 fault modeling, an OR gate is used instead of
XOR cells and for stuck at 0 fault model, XOR cell is replaced with
an AND gate with inverted input control signal.

In this method control signals have a critical role in fault
injection mechanism. Due to the increasing complexity of digital
designs, control signals must be managed properly for calculating
the vulnerability of advanced processor structures. Distributed
decoders or shift registers are apt choices for fault injection acti-
vation. In our approach, for single event upset (SEU) and single
event transient (SET) faults, decoders are used to inject a fault in a
single cycle in the target position of the circuit. An external con-
troller in fault emulation platform is designed that is responsible
for managing all complexities in fault injection activation and
determines which faults should be activated in which CPU cycles
of workload execution.

3. AVF analysis framework

Our proposed FPGA-based AVF analysis and fault emulation
framework has been named FARAVAM (Flexible, Accurate and
Rapid Architecture Vulnerability Analysis in Microprocessors). It
offers a method for fast and accurate evaluation of application
fault masking and vulnerability of an ASIC design. Some features
and capabilities provided by our proposed FPGA based AVF ana-
lysis framework, are described below.

Fig. 1. Adding capability of transient fault injection to basic cells of a standard
synthesis tool library.

H. Mahdiani et al. / INTEGRATION, the VLSI journal 53 (2016) 14–26 15



Download English Version:

https://daneshyari.com/en/article/539520

Download Persian Version:

https://daneshyari.com/article/539520

Daneshyari.com

https://daneshyari.com/en/article/539520
https://daneshyari.com/article/539520
https://daneshyari.com

