
Invited paper

A dynamic specification to automatically debug and correct various
divider circuits

Mohammad Hashem Haghbayan, Bijan Alizadeh n

School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran

a r t i c l e i n f o

Article history:
Received 17 February 2015
Received in revised form
6 December 2015
Accepted 9 December 2015
Available online 29 December 2015

Keywords:
Arithmetic and logic units
Debugging aids
Diagnostics
Verification
Formal models

a b s t r a c t

This paper presents a formal technique to verify and debug division circuits on fixed point numbers. The
proposed technique is based on a reverse-engineering mechanism of obtaining a high level model of the
gate level implementation and also introducing an intermediate representation of the specification that
makes equivalence checking between two models possible. The main advantage of this representation is
the fact that the specification is dynamically updated according to the information obtained from the
implementation. At the end, if two updated models are not equivalent, possible bugs can be localized and
then corrected automatically by analyzing the difference, if possible. Experimental results show the
robustness of the proposed technique in comparison with other contemporary methods in terms of the
run time and also show that two orders of magnitude average speedup is obtained.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

As the size and complexity of digital systems increase con-
tinuously, design verification and debug are quickly becoming
more important. From a verification point of view, one of the most
difficult parts in such complicated designs is arithmetic datapaths
and their components, such as multipliers and dividers. Most of
hardware verification tools are based on bit-level methods like
Binary Decision Diagrams (BDDs) or Satisfiability (SAT) solvers that
are not scalable because they suffer from space and time explosion
problems when dealing with large arithmetic circuits [1,2]. To
alleviate this problem, word-level decision diagrams like Binary
Moment Diagrams (BMDs), *BMDs and K*BMDs have been pro-
posed [3]. However, these diagrams and decision procedures still
suffer from the memory explosion when dealing with wide ranges
of arithmetic operations due to the fact that functions are defined
over binary variables as a bit vector rather than integer variables.
Another methodology transforms arithmetic circuits into propo-
sitional logic formulas and then satisfiability tools, i.e., SAT or Sat-
Modulo Theories (SMT) solvers, are employed to verify the validity
of the formulas [11]. Although Boolean SAT-based methods are
very efficient regarding memory requirement, they have not been
very successful for designs containing large arithmetic units due to
computational complexity. SMT-based verification techniques are

also suffering from the same problem because when dealing with
arithmetic circuits most SMT solvers resort to bit blasting and
therefore they show the same performance limitations as pure SAT
solvers [11]. In [24] the authors proposed a SAT-based solution for
logic diagnosis of multiple faults or design errors in combinational
and sequential circuits. Again the proposed method is not scalable
in terms of time and memory space since SAT solver is used for the
verification and diagnosis process. In addition, such decision dia-
grams and decision procedures are not able to handle division
circuits which are one of the most important operations of arith-
metic computations.

A well-known approach in verifying arithmetic circuits is to
extract arithmetic operations from the gate-level implementation
and then generate an arithmetic model to be compared with a
high level specification [5,10]. For example this technique can
check the equivalence of integer multipliers based on a bit level
reverse-engineering approach. The main challenge is to efficiently
extract an arithmetic bit level description of a circuit from a given
gate-level arithmetic circuit. Reverse engineering could be con-
sidered as a very pragmatic approach to multiplier verification. As
the number of possible architectures for a multiplier is limited one
may incorporate a variety of architectures in the frontend of the
equivalence checker and repeat the comparison for all of them.
The verification approach in [5,10] benefits from an efficient
reverse-engineering process in extracting a network of half-adders
from the gate-level circuit, while there is no need of an exhaustive
process to map carry signals.

The authors of [4] proposed a formal method to describe and
verify arithmetic circuits using symbolic computer algebra. The

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/vlsi

INTEGRATION, the VLSI journal

http://dx.doi.org/10.1016/j.vlsi.2015.12.004
0167-9260/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: h.haghbayan@ece.ut.ac.ir (M.H. Haghbayan),

b.alizadeh@ut.ac.ir (B. Alizadeh).

INTEGRATION, the VLSI journal 53 (2016) 100–114

www.sciencedirect.com/science/journal/01679260
www.elsevier.com/locate/vlsi
http://dx.doi.org/10.1016/j.vlsi.2015.12.004
http://dx.doi.org/10.1016/j.vlsi.2015.12.004
http://dx.doi.org/10.1016/j.vlsi.2015.12.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2015.12.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2015.12.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2015.12.004&domain=pdf
mailto:h.haghbayan@ece.ut.ac.ir
mailto:b.alizadeh@ut.ac.ir
http://dx.doi.org/10.1016/j.vlsi.2015.12.004


main idea is to describe arithmetic circuits with integer equations
in a hierarchical manner. These equations (potentially very large)
are formally verified by formula manipulations based on Groebner
basis [7]. The authors of [12] modeled a gate level implementation
by polynomials over rings Z2

n and then the normal forms are
computed with respect to the Groebner basis using modern
computer algebra algorithms. This model is complicated and is not
scalable to practical designs. The authors of [13], take the advan-
tage of Groebner basis theory to verify arithmetic circuits over
rings Z2n. Instead of mapping each gate to a polynomial, they have
significantly reduced the number of polynomials by finding
fanout-free regions and representing the whole region by one
single polynomial. Although these techniques seem to be robust
for large arithmetic circuits, they are not able to handle dividers.
One of our contributions in this paper is extending the debugging
technique in [5,10] in order to verify and debug large arithmetic
systems that contain dividers in addition to adders and
multipliers.

There has been considerable interest in using theorem proving
techniques to verify arithmetic circuits such as multipliers and
dividers [8,14,15]. In these techniques, gate level implementation
and high level specification should be translated into or described
in an appropriate specification language which is usually
equation-based. Then, a proof by induction is attempted to check
the equivalence between two models that needs user guidance.
Symbolic Trajectory Evaluation (STE) based formal verification
approach has been widely used at Intel in the past for various
microprocessor designs to formally verify data-path designs [20].
The authors of [21] implement industrial level tools tied together
in the ACL2 theorem prover and focus on hardware validation.
Although such techniques are scalable enough to be able to verify
large arithmetic circuits, their main drawback is to balance effi-
ciency with generality since a single proof strategy is being applied
to all theorems. In other words, the main problem with theorem
proving techniques is the lack of expertize and documentation. It
takes a considerably long time to learn theorem proving techni-
ques and also there is a strong need for libraries of specifications to
be established, and more automated tools and approaches.

In this work, we assume that a gate-level implementation as
well as a high level specification of a complex arithmetic datapath
on fixed point numbers is given. Fig. 1 shows the basic idea behind
the proposed debugging technique. As can be seen in the figure,
from the specification, expected arithmetic operations are
extracted and represented using functional bit level adder (FBLA)
representation. FBLA is an extension of the BLA in [5,10] that will
be explained in Section 3. Based on such a model, adders and other
controlling logics are extracted from the gate-level implementa-
tion and then represented using logical bit level adder (LBLA) as

will be discussed in Section 4. During the extraction of high level
components from the implementation, FBLA will be updated if
needed. This dynamic updating mechanism allows the algorithm
to prepare FBLA for various structures based on extracted adders
or repetitive logic cones. Then, the equivalence between the logics
extracted from the implementation and expected arithmetic
operations extracted from the specification are checked using a
canonical mixed bit- and word-level decision diagram called
Horner Expansion Diagram (HED) [16]. In the case of non-
equivalent functionalities, error correction is performed by repla-
cing buggy logics with expected functions from the functional bit
level model. It should be noted that the expected functions in FBLA
model are gradually updated during processing the implementa-
tion and cannot be specified independent of the implementation.

In addition to the above-mentioned methods, there are many
methods for verification of dividers specially SRT dividers [1,17–
19]. In general most of them cannot support optimization techni-
ques and in some cases the run time is very high.

In summary, the main contributions of this paper in compar-
ison with our previous works [5,10,23] are as follows:

� An algorithm tightly integrating verification and debugging of
fast array dividers and sequential dividers even in the case of
speeding up the remainder update stage (quotient selector
logic) in the implementation where the design makes use of a
sum and carry representation for the remainder, as will be
discussed in Section 4.

� Dynamically representing the specification that can extend our
proposed debugging algorithm in such a way that can be
applied to optimized arithmetic circuits while the techniques in
[5,10] are not able to handle such designs, as will be discussed
in Section 5.

� Formally describing a wide range of arithmetic circuits includ-
ing fast array dividers as well as sequential dividers by pro-
posing functional bit-level and logical bit-level representations
while the technique in [23] is just applicable to restoring and
non-restoring dividers.

� Showing empirical results to prove that our proposed debug-
ging technique enables us to verify and debug large industrial
arithmetic circuits within practical time.

The rest of the paper is organized as follows: Section 2 presents
the background on division arithmetic. In Section 3 basic repre-
sentations are introduced. Section 4 presents the proposed
debugging technique for different types of division circuits. In
Section 5, we explain how to address various optimization issues.
Section 6 demonstrates experimental results and Section 7 con-
cludes the paper and presents the future works.

Fig. 1. Basic idea of the proposed debugging and correction techniques.

M.H. Haghbayan, B. Alizadeh / INTEGRATION, the VLSI journal 53 (2016) 100–114 101



Download English Version:

https://daneshyari.com/en/article/539527

Download Persian Version:

https://daneshyari.com/article/539527

Daneshyari.com

https://daneshyari.com/en/article/539527
https://daneshyari.com/article/539527
https://daneshyari.com

