
Power-performance enhancement of two-dimensional RNS-based
DWT image processor using static voltage scaling

Azadeh Safari n, Cheecottu Vayalil Niras, Yinan Kong
Department of Engineering, Faculty of Science and Engineering, Macquarie University, Australia

a r t i c l e i n f o

Article history:
Received 31 May 2015
Received in revised form
9 December 2015
Accepted 16 December 2015
Available online 13 January 2016

Keywords:
High-speed arithmetic
Residue number system
Discrete wavelet transform
Low-power design
Image compression
Multi-voltage processor

a b s t r a c t

Digital image processing is widely used in fast and high-performance applications. The high speed and
functional requirements of such applications, however, lead to increased power consumption. Hence,
finding a way to solve the power-performance issues is of great importance. In this paper, we present the
power-performance enhancement of a two-dimensional (2D) discrete wavelet transform (DWT) image
processor using the residue number system (RNS) and the static voltage scaling (SVS) scheme. The aim of
this paper is to investigate the effects of the RNS and SVS scheme on the proposed image processor. The
original contributions of the proposed design include a low-complexity hardware architecture of the
RNS-based filter banks, optimized transposition units and exploiting the SVS scheme to reduce the power
consumption. The multiplierless scheme of the RNS-based filter banks and the binary-coded number
format are used to save on hardware complexity, while modular arithmetics and 6-bit dyadic fraction
filter coefficients are applied to improve the system performance. The bi-orthogonal discrete wavelet
transform CDF97 is chosen to compress the images due to its multi-resolution features and its ability to
localize finite signals. The proposed design has been synthesized using the generic library SAED90nmEDK
with the Synopsys Design Compiler (DC).

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

One of the most significant current discussions in digital image
processing is about finding a fast and efficient technique for the
storage and transmission of images. Various methods have been
developed and introduced to optimize existing systems. Among
proposed schemes, optimizing the arithmetic level of image pro-
cessors has drawn more attention, since it plays an important role
in satisfying the requirement for a large volume of computational
operations in image processing. Replacing conventional binary
systems with the Residue Number System (RNS) has been steadily
rising in favor over the last 50–60 years. The RNS-based archi-
tecture allows the processing of modular channels simultaneously,
and saves significant delays in arithmetic operations. Using small
integers in independent channels also reduces the carry propa-
gation and number of partial products in adders and multipliers,
respectively [1,2]. There are many RNS-based designs for general
and specialized processors in the literature [3,4]. The design and
implementation of an RNS-based image processor using DWT fil-
ter banks and RNS arithmetic is proposed in [3]. The proposed

design used 27 look-up tables (LUT) for modular arithmetic. Each
LUT had an 8-bit width and 256 entries to store all the results of
modular multiplication. The downside of that processor is that
LUTs and RAMs are main sources of leakage power, which is the
major concern of standalone applications like mobile phones and
cameras. On the other hand, [4] has reported that the best RNS
designs have a hardware cost about the same as or more than the
binary designs. In other words, while using RNS can help to
enhance the performance of an image processor, the architecture
of using modular arithmetic might increase the power consump-
tion of the system [5]. Therefore, one question that needs to be
asked is what aspects of RNS processors are superior to binary
designs. This paper will provide a design and optimization of a
RNS-based digital image processor in detail and examine it against
a binary processor. Details of proposed residue arithmetic units are
explained in such a way that the novelty can be appreciated. The
study will also implement the proposed processor with static
voltage scaling to achieve the best power-performance trade-off in
the proposed image processor.

2. Preliminaries

This section provides background information and pre-
liminaries on the residue number system, the discrete wavelet
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transform and the static voltage scaling method that are directly
relevant and useful for designing and implementing the proposed
processor.

2.1. The residue number system

Each number ðXÞ in the RNS can be represented as a set of the
least positive remainders when it is divided by the set of the
moduli (moduli set). The moduli set is shown as ðm1;m2;…;miÞ
where mi is the ith modulus, and each pair of moduli are relatively
prime. The residue set is commonly shown as ðr1; r2;…; riÞwhere ri
is the ith residue. The residue of ðXÞ can be calculated based on the
congruence [6,7]:

ri ¼
X mod mi; XZ0
ðmi�jX j Þmod mi; Xo0

(
ð1Þ

Each RNS-based system has a dynamic range that is the total
number of different values that can be represented using that set
of moduli [6].

For the residue set of X ¼ ðx1; x2;…; xnÞ and Y ¼ ðy1; y2;…; ynÞ,
the arithmetic operation is performed independently on each
residue, as follows:

jXoY jM ¼ ðjx1oy1 jm1 ; jx2oy2 jm2 ;…; jxnoyn jmn Þ ð2Þ
where ðoÞ represents addition, subtraction or multiplication. Eq.
(2) shows the primary advantage of using small residues instead of
large numbers. It also shows how the carry-propagation problem
is solved in the RNS by limiting it within a single residue [8].

Moduli-set selection has a direct impact on the performance of
the residue system. Selecting an efficient moduli set for a specific
dynamic range improves the bit efficiency [9]. In this paper, the
moduli set ð2n�1;2n;2nþ1Þ is selected, being very popular when
applying RNS for image processing due to its simplicity and the
design efficiency of functional and conversional units [10–12]. The
selected moduli set has been suggested as “the most standard and
widely used” moduli set in [13]. Also, the authors in [14] have
compared the selected moduli set with “general moduli sets” in
terms of the speed and hardware complexity. They compared the
area and speed with four general moduli sets for 8, 16, 32 and 64-
bit ranges and concluded that the reverse converter of the selected
moduli set “is the fastest and requires the least amount of data”.

In terms of the bit efficiency of the selected moduli set, [15]
suggests that, for the medium dynamic range (21 bits or less), the
most efficient moduli set is the selected moduli set; however for
large dynamic ranges (22 bits or more) we cannot use a three-
moduli set any more and it should be of the form
ð2n1 ;2n1 þ1;2n1 �1;2n2 71;…;2ni 71Þ. Later on, they cited [16] and
concluded that “the upper bound of the dynamic range for using
three-moduli sets is around 24 bits”. In this paper, for the selected
three-moduli set and n¼ 8, the dynamic range ðMÞ has 16,776,960
different values, or 24 bits, which is in the suggested range. For the
moduli set ð2n�1;2n;2nþ1Þ ¼ ð255;256;257Þ, the total number of
bits required for the different arithmetic blocks are calculated
using Eq. (3). It shows that, for the selected moduli set, each
operating block should use 25 bits to avoid overflow:

⌈log 2m1⌉þ⌈log 2m2⌉þ⌈log 2m3⌉¼ 8þ8þ9¼ 25 ð3Þ

2.2. Discrete wavelet transform (DWT)

The discrete wavelet transform (DWT) is capable of fast image
compression with less area and low power consumption. It has
shown excellent performance in digital image compression and
de-noising applications such as source encoding in the JPEG2000
still-image compression standard and in FBI wavelet scalar quan-
tization [17–19].

In DWT, an image is decomposed by passing through an ana-
lysis filter bank which consists of a highpass and a lowpass filter at
each level. After each level of decomposition, an approximation
signal with the resolution reduced by a factor of 2 ðLLÞ and detail
signals ðLH;HL and HHÞ are obtained. If further decomposition is
required, the previous level's lower-resolution approximation
signal ðLLÞ becomes the next-level sub-sampling input, and its
related detail signal is stored after filtering at each level [20,21].
Fig. 1 shows one-level signal decomposition using 2D DWT.

DWT can be implemented using the pyramid algorithm (an
octave-band filter bank with j levels) in the multi-resolution
analysis framework. For a signal sequence of x(n), the approx-
imation ðainÞ and detail ðdinÞ signals at level i are defined using Eqs.
(4) and (5), respectively [22]:

ain ¼
XN�1

k ¼ 0

hka
ði�1Þ
2n�k ð4Þ

din ¼
XN�1

k ¼ 0

gka
ði�1Þ
2n�k ð5Þ

where hk and gk are lowpass and highpass coefficients selected
based on the chosen wavelet family, n is the filter length, k is the
filter coefficient length and i¼ 1;2;…; j.

Removing high-frequency components of images using DWT
improves the quality of images. One reason for achieving better-
quality images by removing high-frequency components is that
luminance (brightness) or low-frequency components are more
important than chrominance (colour difference) or high-frequency
components to provide a fine-quality image. Another advantage of
using DWT in image processing is that, in multi-resolution image
processing, only the approximation signal ðLLÞ will be stored and
used as the next-level input. This feature helps to reduce hardware
complexity. Having noted the popularity and advantages of using
DWT, it is also important to choose a correct wavelet for a specific
application. Among the DWT family, bi-orthogonal DWT uses a
linear-phase filter, which solves the common problems of image
compression such as coefficient expansion, border artifacts, image
blurring or spatial dislocations. In addition, BDWT filters can be
designed to have integer coefficients, and multiplications can be
implemented using only register shift and addition. The capability
of bi-orthogonal wavelets with symmetric extension is another
reason for their superior performance [23,24]. Table 1 shows the
CDF97 floating-point filter coefficients.

2.3. Static voltage scaling (SVS) method

There are various low-power design (LPD) approaches to
reduce total and leakage power, from the early steps of circuit
design to the very last steps of system implementation. The most

Fig. 1. One-level signal decomposition using 2D DWT.
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