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Pseudo-potentials for diatomic molecules can be interpolated to high accuracy with a high order Hermite
spline via the function Y = —[(Es — Ey)/Eu]Ez [(1 — z)/2]? where Es is the energy of the separated atoms, Ey
the united atom energy, Eg the electronic energy and z = (R — R,)/(R + R;), where R is the inter-nuclear dis-
tance and R, is an adjustable parameter. Both Y and its derivative with respect to z are very smooth,
which facilitates the interpolation process.

Limiting laws are used at each end to provide spline constraints and also to replace the spline in the
regions beyond the data, giving a hybrid result. The low R limiting law is of the form Eg=Ey+ X, A;
R'. The A coefficients are obtained by least-squares. The high R limiting law is of the form E = Eg-
>GR; the C coefficients can be obtained from perturbation theory, least-squares or in combination.

Test data with a pseudo-potential similar to that of most diatomic molecules with added noise was
interpolated with an order 12 spline at data intervals of 0.05, 0.1 and 0.2 Bohr. The resulting maximum
errors in Eg and vibrational energy levels were no more than several times a noise level of 10717, 10~1°
and 1071°, respectively. The lowest noise level at which the maximum errors were acceptable decreased
with data range, spline order and smoothness of the function. The interpolation procedure was success-
fully applied to the H; X, C and a states, for which abundant data in the form of tables of energy and gra-
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dient are available.
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1. Introduction

Interpolation is a process for obtaining an approximate value of a
function f(x) at arbitrary x intermediate between x values where the
value of the function is given. This process must be applied to a pseu-
do-potential constructed from ab initio calculations of the energy of
a molecule with fixed nuclei, since (a) the true analytic form of the
pseudo-potential is not known and (b) the calculations at each point
are expensive. The calculated points themselves are imprecise due
to convergence cutoffs and finite precision arithmetic.

Progress has been made in solving the Schrédinger equation for
diatomic molecules with nuclei and electrons treated together [1-
4]. Currently though, the pseudo-potential concept is retained in
most calculations, which start with a Born-Oppenheimer [5]
approximation, and it is the interpolation of results from this first
step that is addressed here.

Interpolating functions can be global or local in nature. Global
functions seek to approximate the energy of a diatomic molecule
over the entire range of inter-nuclear distances. Such functions
have a very long history and include the Kratzer-Fues [6,7], Len-
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nard-Jones [8] and Morse potentials [9]. Variations on these and
other functions are in wide use today.

Spline functions in the form of piecewise polynomials with con-
straints at the knots connecting them are used in conjunction with
diatomic molecule calculations [10,11]. The effect of cubic spline
interpolation error on calculated energy levels has been analyzed
[12]. Higher order Hermite splines, which are splines based on
functions together with their first derivatives and will be used
here, have been investigated and applied in other disciplines
[13]. The effectiveness of an interpolation method depends on
the spacing of the data, the noise level and the smoothness of
the function to be fit. These obvious criteria are used to judge the
value of the interpolation method introduced here and to define
its limitations.

2. Theory
2.1. Energy function

The function of the energy to be used here is

Y(2) = - <ES Ef”) E (1 - Z)Z
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where Es is the energy of the separated atoms, Ey is the energy of
the united atom, Eg is the electronic energy and z is defined as
(R — Ry)/(R +R,), where R is the inter-nuclear distance and R, is an
arbitrary distance greater than zero. The z definition differs from
the usual one, which uses the equilibrium distance, R.. The first
term is a scaling parameter. The electronic energy is the total en-
ergy less the nuclear repulsion term and is used so as to give a func-
tion that is everywhere finite. The third term fixes a practical
problem associated with the uncertainty in the gradient of the elec-
tronic energy and requires some explanation. The derivative of the
electronic energy with respect to z is

@ — @ ‘LR — % 2R, (1)
dz) \dR/)\dz) \dR)|(1-2z)?
If dE/dR is given to a finite number of decimal places, for in-
stance in a table of values, at least part of the uncertainty associ-
ated with dEg/dR is a constant. The uncertainty associated with

dEg/dz then becomes large as R becomes large as z approaches
one. The derivative of Y with respect to z can be written as

P CHEE o

The (1 — z)? term in the denominator of Eq. (1) is not present in
Eq. (2), which fixes the problem. The function Y(z), together with
its derivative utilize all of the data available from ab initio calcula-
tions on diatomic molecules. The endpoints are obtained from
atomic data, and no extrapolation is required.

Uncertainties in Ex and dEg/dR are assumed to originate from
imperfect integral convergence, which can be dependent on the in-
ter-nuclear distance and from the number of decimal places used
to report the final result. In the absence of a detailed analysis of
the ab initio calculation, the combined uncertainty is assumed to
be of the form

12
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where the parameters b and c can be determined from the noise
residual of fits of closely spaced points to a low order polynomial,
performed near various widely spaced R values, while d is the num-
ber of decimal places reported.

2.2. Low R limiting law (LRLL)

Ab initio calculations at low R are important for the study of
scattering phenomena [14] and for dipole moment functions
[15]. At low R values, the electronic energy takes the form [16]

Ee=Ey+ > AR 4)
i=2

Levine [17] obtained A, from second order perturbation theory
for H; . In general though, there does not appear to be a proper the-
oretical framework for obtaining the higher A coefficients at the
present time. Accordingly, a least-squares fit to the electronic
energy and its gradient is performed. The fitting procedure uses
Jacobi polynomials.
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where n is the number of data set pairs, R, is the highest R value
used and m is the number of coefficients. No orthogonality exists,
and the correlations can be quite high. The values and uncertainties
at points not present in the data can be evaluated from the coeffi-
cients and the covariance matrix. The m and n are chosen to mini-
mize the maximum uncertainty estimate in the range between
R =0 and R;,. The A coefficients and the derivatives of Y(—1) are de-
rived from the least-squares result.
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Table 1

Test data results in a.u. with R range 0.1-40.0, interval AR = 0.1, spline order 12 and
noise level 1 x 10~'". LRLL is the low R limiting law, HRLL is the high R limiting law,
the A; are the LRLL coefficients, the C; are the HRLL coefficients, R, is the equilibrium
inter-nuclear distance, D, is the equilibrium dissociation energy and D,; is the
dissociation energy for the vibrational state v, J.

Test data 1 2 3

LRLL

Data points 11 11 11
Parameters 15 15 15

Variance 0.267 0.285 0.274

R range 0-1.1 0-1.1 0-1.1

Max. uncertainty 1.24 x 107" 1.25 x 107" 1.24 x 107"
Max. error 1.60 x 1071 1.60 x 1071 422 x 10711
HRLL

Data points 118 118 118
Parameters 2 2 2

Variance 0.680 0.680 0.681

R range 28.3-0 28.3-00 28.3-00
Max. uncertainty 1.04 x 1071 1.04 x 1071 1.04 x 10711
Max. error 216 x 107! 216 x 10!

Added points 425 412 403

Errors

Max. Eg 2.5 %107 2.5 %107 49 x 107"
Ay 46x10°8 8.7x1078 1.6 x10°8
As -46x10°° -39x%x10°° —-5.7 x 1077
Ay 34x10° 74x107° 6.4 x 107
As -33x10* -79x104 ~-13x107°
As 2.1 x1073 5.6 x 1073 -31x10*
A; -89x1073 -27x1073 -33x1073
Ag 2.7 x1072 9.5 x 1072 -1.7 x 1072
Ag —6.1x 1072 24 x 107! 5.8 x 10%
Ao 1.0 x 107! 46 x 107! -13x 107"
A ~12x 107" ~62x107! 22x107"
Aqz 1.1x 107! 54 x 107! —25x%x 107!
A3 ~7.0x 1072 -1.7x 107! 2.0x 107!
Aa 3.0x 1072 —26x107! ~1.1x 107"
Ars -75%x1073 44 x107" 3.5 x 1072
Ats 7.4 x107* -23x107! 51x1073
GCs 63 x 1073 63 x 1073 5.0 x 1073
Cg -5.6 -5.6 -34

R. 8.0x10°1° 23 x10° ! 6.8 x 10713
D, 5.0 x 10712 42 x 10712 3.1x1071?
Max. Dy 3.4 %1012 3.4 %1012 8.1 x 10712
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