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a  b  s  t  r  a  c  t

The  use  of  effective  local  Coulomb  interactions  that are  dynamical,  that is, frequency-dependent,  is an
efficient  tool  to describe  the effect  of  long-range  Coulomb  interactions  and  screening  thereof  in  solids.
The  dynamical  character  of  the  interaction  introduces  the  coupling  to  screening  degrees  of  freedom
such  as plasmons  or particle-hole  excitations  into  the  many-body  description.  We summarize  recent
progress  using  these  concepts,  putting  emphasis  on  dynamical  mean  field  theory  (DMFT)  calculations
with  dynamical  interactions  (“doubly  dynamical  mean  field  theory”).  We  discuss  the  relation  to  the  com-
bined GW+DMFT  method  and its  simplified  version  “Screened  Exchange  DMFT”,  as  well as  the  cumulant
schemes  of  many-body  perturbation  theory.  On  the  example  of the  simple  transition  metal  SrVO3, we
illustrate  the  mechanism  of the  appearance  of plasmonic  satellite  structures  in  the  spectral  properties,
and  discuss  implications  for the  low-energy  electronic  structure.
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1. Theoretical spectroscopy: from many-body perturbation
theory to dynamical Hubbard interactions

Determining the behavior of a single electron in a periodic
potential, created for example by the ions in a crystalline solid,
is a textbook exercise of quantum mechanics. Determining the
wave function of all the electrons in the solid, however, is an
intractable many-body problem. The Pauli principle imposes full
antisymmetry under exchange of any two electrons to this object,
and electronic Coulomb interactions prevent it from being a simple
Slater determinant.

The good news is that in practice the knowledge of the full
many-body wave function of the inhomogeneous electron gas in
the solid is barely necessary: the relevant electronic properties
are determined by the low-energy response to external perturba-
tions, and the knowledge of these low-energy excitations requires
much less information than the full ground-state wave function.
In this sense, solid state spectroscopies are a most efficient means
for characterizing the properties of a solid state system. An impor-
tant example are photoemission experiments – angle-resolved or
angle-integrated – where information about the electron removal
and addition spectra are obtained. Within the simplest possible
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model for the photoemission process, the so-called “three-step
model”, the photocurrent can be expressed in terms of the one-
particle spectral function A(k, ω) = − 1

� TrIG(k, ω), and computing
this quantity from first principles, that is, without adjustable
parameters, is one of the central challenges of modern theoretical
spectroscopy.

Important progress has been achieved over the last decades
within many-body perturbation theory: a first order expansion of
the many-body self-energy � in the screened Coulomb interac-
tion W [1,2] leads to a conceptually simple approximation � = iGW
which can be calculated within realistic electronic structure codes
based on density functional theory (DFT). For reviews of success-
ful applications of the GW approximation and developments based
on it, we  refer the reader to [3,4]. For more strongly correlated
materials, where perturbative techniques reach their limits, the
last 15 years have seen the development of a non-perturbative
theory, combining dynamical mean field theory (DMFT) [5] with
density functional theory. This so-called “DFT+DMFT” approach
[6,7] builds on the success of DMFT for the description of lattice
models for correlated fermions but extends its scope to the solid
by treating a realistic (multi-orbital) Hamiltonian with effective
local Coulomb interaction, often parametrized as Hubbard U and
Hund’s J.

While DFT+DMFT – at least in its early implementations – can
simply be understood as the DMFT solution of a multi-orbital
Hubbard model (for reviews see [8–10], for some more modern

http://dx.doi.org/10.1016/j.elspec.2016.01.001
0368-2048/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.elspec.2016.01.001
http://www.sciencedirect.com/science/journal/03682048
http://www.elsevier.com/locate/elspec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.elspec.2016.01.001&domain=pdf
mailto:biermann@cpht.polytechnique.fr
dx.doi.org/10.1016/j.elspec.2016.01.001


18 S. Biermann, A. van Roekeghem / Journal of Electron Spectroscopy and Related Phenomena 208 (2016) 17–23

implementations [11,12]) recent efforts have been spent in order
to promote DMFT-based techniques to truly first-principles tech-
niques [13]. This implies not only addressing the question of how
to relate effective local Hubbard interactions to the full Coulomb
interactions in the continuum (while taking care to avoid double-
counting of screening), that is the ab initio calculation of the
infamous effective local “Hubbard U”; since at the DFT level no rig-
orous distinction between contributions of “correlated degrees of
freedom” and “uncorrelated” ones can be made, a truly double-
counting free theory can only be achieved by eliminating the
reference to the DFT Kohn-Sham Hamiltonian altogether. A suc-
cessful route is the combination of Hedin’s GW approximation with
DMFT, the so-called GW+DMFT method [14–17]. A summary of
recent progress along these lines can be found in [13]; for most
recent applications both, in the model and realistic electronic struc-
ture context we refer the reader to Refs. [18–22]. The common point
between the GW method and the combined GW+DMFT scheme
is the absence of adjustable interaction parameters. Both theories
can be viewed as approximations to a free energy functional [23],
where the free energy of the solid is written as a functional of the
Green’s function G and the screened Coulomb interaction W.  This
implies that screening is described within the theory, instead of
being introduced into it through an effective parameter. Besides the
screened Coulomb interaction W,  the GW+DMFT theory introduces
an effective local interaction U used as the bare interaction within
an effective local model. The GW+DMFT equations require this
interaction to be calculated self-consistently such as to reproduce
the local part of the fully screened interaction W when the local
model is solved by many-body techniques. This implies that the two
interactions are related by a two-particle Dyson (or Bethe–Salpeter)
equation U−1 − W−1

loc
= Ploc , where Ploc is the polarisation function of

the local problem. The physical content of this construction can be
described as follows: instead of using the full long-range Coulomb
interaction within a full continuum description, an effective local
interaction U is used within an effective local problem, but the inter-
action U is determined such that the two problems reproduce the
same fully screened local interaction W.  The price to pay is that the
effective interaction U inherits from the fully screened interaction
W its dynamical, i.e. frequency-dependent character (even though
the bare interaction in the full Hilbert space, the bare Coulomb
interaction, is frequency-independent).

Interestingly, this concept can be generalized and has proven
useful even outside the GW+DMFT scheme. Namely, the full
many-body problem can be simplified by eliminating some of
the interacting degrees of freedom, at the price of introducing
an effective dynamical interaction. The latter is determined from
the requirement that when the resulting many-body problem is
solved, the fully screened interaction is retrieved. In this work, we
describe the different sources of frequency-dependence of effec-
tive local Hubbard interaction and investigate their effects on solid
state spectroscopies. Section 2 discusses the dynamical character
of effective interactions, while Section 3 presents the relation to
coupled electron-boson Hamiltonians. Solving such a Hamiltonian
within DMFT, that is, by mapping onto a local problem, consists in
generalizing the usual DMFT concept to a “doubly dynamical” one,
where not only the Weiss mean field is dynamical but also the effec-
tive local interactions. We  abbreviate this “doubly dynamical mean
field theory” in the following as “DDMFT”. Section 4 introduces
approximate but very efficient and accurate concepts for solving
the dynamical impurity model arising within DDMFT in the antia-
diabatic limit. Section 5 addresses implications for the resulting
spectral functions, in particular with respect to satellite structures
and spectral weight transfers – concepts that are then applied to the
ternary transition metal oxide SrVO3 in Section 6. A discussion of
observable consequences of dynamical screening effects concludes
this work.

2. Dynamical interactions: the concept of partial screening

The above equation for the effective local interaction U can be
rewritten as

Wloc = U
1 − Ploc U (1)

stressing the interpretation of screening of the effective interaction
U by the dielectric function of the effective local problem:

�−1
loc

= 1
1 − Ploc U . (2)

Alternatively, one can say that the screened interaction is
“unscreened” by Ploc to obtain U:

U = Wloc

1 + PlocWloc
(3)

These observations have motivated generalizations of the con-
cept of partial screening, where a many-body problem is solved in
a two-step procedure: first, an effective Hamiltonian (or action) is
constructed in a Hilbert space that is a subset of the original space.
Finally, this effective many-body problem is solved with some suit-
able many-body technique. The bare interaction in the subspace is
a partially screened interaction in the full space. In order to deter-
mine it, one needs some estimates for the fully screened interaction
W and the polarization “at the second step”, the polarization Pstep−2
of the effective many-body problem. Then, the effective interaction
is constructed as

U = W

1 + Pstep−2W
. (4)

The most important example of such a “constrained screening
approach” (see [25] for a more detailed discussion of the general
philosophy) is the so-called “constrained random phase approxi-
mation” [24]. The cRPA provides an (approximate) answer to the
following question: given the Coulomb Hamiltonian in a large
Hilbert space, and a low-energy Hilbert space that is a subspace of
the former, what is the effective bare interaction to be used in many-
body calculations dealing only with the low-energy subspace, in
order for physical predictions for the low-energy Hilbert space to
be the same for the two descriptions? A general answer to this
question not requiring much less than a full solution of the initial
many-body problem, the cRPA builds on two  approximations: it
assumes (i) that the requirement of the same physical predictions
be fulfilled as soon as in both cases the same estimate for the fully
screened Coulomb interaction W is obtained and (ii) the validity of
the random phase approximation to calculate this latter quantity.

The cRPA starts from a decomposition of the polarisation of the
solid in high- and low-energy parts, where the latter is defined
as given by all screening processes that are confined to the low-
energy subspace. The former results from all remaining screening
processes:

Phigh = P − Plow, (5)

One then calculates a partially screened interaction

Wpartial = ε−1
partial�. (6)

using the partial dielectric function

ε−1
partial = 1

1 − Phigh�
. (7)

Screening Wpartial by processes that live within the low-energy
space recovers the fully screened interaction W.  This justifies the
interpretation of the matrix elements of Wpartial in a localized Wan-
nier basis as the interaction matrices to be used as bare Hubbard
interactions within a low-energy effective Hubbard-like Hamilto-
nian written in that Wannier basis.
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