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a  b  s  t  r  a  c  t

With  the  recent  availability  of a  high  order  FDM  solution  to the  curved  boundary  value  problem,  it  is  now
possible  to  determine  potentials  in  such  geometries  with  considerably  greater  accuracy  than  had  been
available  with  the  FDM  method.  In  order  for  the  algorithms  used  in the  accurate  potential  calculations  to
be  useful  in  ray  tracing,  an  integration  of those  algorithms  needs  to  be  placed  into  the ray  trace  process
itself.  The  object  of  this  paper is to incorporate  these  algorithms  into  a solution  of  the  equations  of
motion  of the ray  and,  having  done  this,  to demonstrate  its efficacy.  The  algorithm  incorporation  has
been  accomplished  by  using  power  series  techniques  and  the  solution  constructed  has  been  tested  by
tracing  the  medial  ray through  concentric  sphere  geometries.  The  testing  has  indicated  that  precisions  of
ray calculations  of  10−20 are  now  possible.  This  solution  offers  a considerable  extension  to the  ray  tracing
accuracy  over  the current  state  of art.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

1.1. Elementary considerations

A particle moving within an electrostatic geometry experiences
a force at each point of its movement proportional to the electric
field at that point. Its path is governed by equations of motion which
must include an accurate representation of this field. In the pro-
cess described below the solution to the equations of motion will
be found within the context of the finite difference method (FDM)
and incorporate representations of the field from the potential algo-
rithms themselves.

1.2. Finite difference method

Descriptions of the finite difference method (FDM) can be found
in many references, the most succinct being that of Heddle [1].
Briefly it consists in placing a rectangular mesh over the geometry
and then relaxing this mesh using an algorithmic process. A long
standing problem with FDM has been its inability to incorporate
curved boundaries in any but the lowest order manner. This diffi-
culty has been recently been overcome and a solution has recently
been found [2,3], with the result that accurate potentials can now
be obtained for these curved boundary geometries. The determi-
nation of the accurate potential distributions has necessitated the

∗ Corresponding author. Tel.: +1 440118022745845.
E-mail address: dej122842@gmail.com

creation of high order algorithms. In order to improve the accuracy
of the ray trace solution, these algorithms are incorporated into it
by the multiple use of power series techniques.

1.3. The solution for the coefficients cj in the power series
expansion of v(r, z)

The expansion of v(r, z) as a truncated power series in r, z may
be written:

v (r, z) = c0 + (c1 × z) + (c2 × r) +
(

c3 × z2
)

+ (c4 × z × r)

+
(

c5 × r2
)

+ · · · + cs−1rn (1)

where c0. . .cs − 1are coefficients of the expansion and n the expan-
sion order, order being defined as the degree of the highest degree
term in the expansion. It is noted that the expansion is made about
a mesh point in the FDM net which in our representation of FDM
occurs at integral values, while the point (r, z) is any point in the
vicinity of this mesh point relative to that mesh point.

The determination of the coefficients cj has been reported [4,5]
and hence is very briefly sketched below. It is noted that the solution
for the coefficients of any given order is called the algorithm for
that order. As the underlying problem is cylindrically symmetric
electrostatics, v(r, z) must satisfy Laplace’s equation at any point r,
z within the geometry by

(
(r + a) ∂2

∂r2
+ ∂

∂r
+ (r + a) ∂2

∂z2

)
v (r, z) = 0 (2)
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Fig. 1. The meshpoints used in the formulation of the various algorithms are depicted. The algorithm for a given order are formed by the average of all possible algorithms
for  that order (see text). It is noted that the very symmetric array of meshpoints used in the average algorithm for orders 6, 8, and 10 are the same as those of the order 8
algorithm, evincing considerable symmetry.

where r, z are the coordinates of any point in the geometry with
reference to its closest mesh point and a the distance of that mesh
point from the axis. This yields an equation in r, z which must be true
for any r, z in the neighborhood of this meshpoint. The latter con-
dition requires that in the resultant equation the coefficient of the
term containing rm, zl must be zero, hence generating k equations
from this single equation. As there are s coefficients to be deter-
mined an additional s–k equations must be found in order to have
a complete set of s equations and s unknowns. These additional s–k
equations are produced by evaluating v (r, z) at a selection of s–k
meshpoints surrounding the meshpoint about which the expan-
sion is made. The number of the additional meshpoints are a strong
function of the order of the power series expansion. The solutions
for order 2, 4, 6, 8, and 10 has been given in [2] and are used in the
ray trace calculation below.

Fig. 1 shows the mesh points required for the various order algo-
rithms. In this figure the points of any algorithm are given by the
red discs together with one additional triangle point. The algorithm
for that order is formed by averaging all possible algorithms of that
order. It is further noted for order 6 and 10 the base algorithm con-
sists of two types (a, b) but again the algorithm for those orders
is the average of all possible (a and b) algorithms. For a further
discussion see Ref. [2].

2. The ray tracing problem

2.1. The equations of motion and their solution

Consider a particle of charge q and mass m at a point r, z within
a cylindrical geometry over which a rectangular mesh has been
overlaid. It is assumed that the particle is at a point of its trajectory
and both its position and velocity are known. The point itself is not
necessarily at a mesh point location but is in the vicinity of the mesh
point nearest to it about which the potential expansions described

above are made. The solution for the particles subsequent motion
is as follows. The equation of motion of this particle is determined
by Newton’s Law,

a = q × E
m

(3)

where E = −∇v (r, z), a its acceleration, and v (r, z) the potential
at r, z.

The equations of motion of the particle follow immediately and
after a straightforward but lengthy calculation are put into dimen-
sionless form resulting in the following two  equations:

d2r (t)
dt2

+
(

beta × ∂v (r (t) , z (t))
∂r

)
= 0 (4)

d2z (t)
dt2

+
(

beta × ∂v (r (t) , z (t))
∂z

)
= 0 (5)

where r, z, t, v, and beta are dimensionless while beta is
given by

beta =
q ×

(
volt/m

)
(

deltar/deltat
)2

(6)

deltar being the distance (in cm)  between physical meshpoints and
deltat the time (in seconds) for a particle with an initial kinetic
energy E0 (eV) to traverse a distance of one mesh spacing. To
proceed r(t) and z(t)are expanded as power series in t in which
terms higher than degree n are neglected. The order of the expan-
sion is defined as n, consistent with its use above.

r (t) = d0 + d1t + d2t2 + · · · + dntn (7)

z (t) = e0 + e1t + e2t2 + · · · + entn (8)

where d0,. . .,  dn, e0,. . .,  en being constants of the expansion. As pre-
viously stated, at the start of the time step (i.e., t = 0) the position
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