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1. Introduction

Electrons in solids behave in most cases like independent par-
ticles, and that in spite of the strong interactions between them.
The explanation of this apparent paradox relies on the concept of
Landau quasiparticle: the multiple forces acting on one electron
dress it up with an interaction cloud and these new dressed parti-
cles (quasiparticles) are effectively independent one from the other.
A specific tool to investigate the very existence of quasiparticles is
photoemission spectroscopy; the time evolution of the system with
one removed particle is what is actually measured and when this
state evolves as a coherent superposition of oscillations of approx-
imately the same frequency it corresponds to the propagation of
a quasiparticle with a reasonably well defined energy and a suffi-
ciently long life-time. In this situation the low-energy excitations
of the interacting electrons can be put into a one-to-one correspon-
dence with those of non-interacting electrons with renormalized
properties (energy and mass) and the measured spectra can be
reduced to a quasiparticle band structure.

From a theoretical point of view, the simplest way to account for
e–e interaction is to include it as a mean field where each electron
moves independently under the influence of the average charge dis-
tribution of all the others. The independent-particle approximation
is at very heart of the computational approaches of the band struc-
ture of solids. Among these computational approaches, schemes
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based on the density functional theory (DFT) [1] have proven to be
very successful and are by far the most widely used approach for
quantitative calculations of realistic systems. Materials for which
this rudimentary mean-field description of e–e interaction is suffi-
cient have broad energy bands associated with large values of the
kinetic energy of the electrons: this implies that the electrons are
highly itinerant and therefore it is reasonable to describe them
using a picture in which interactions become smooth and can be
averaged out. On the contrary when bands are narrower and the
associated kinetic energy smaller, namely when electrons tend to
localize around lattice ions, they see each other as individual point
charges and the correlation between their motion becomes impor-
tant. For these systems the single particle picture is inadequate
and their electronic properties can be described only treating the
multiple pair-wise e–e interaction as a true many-body term.

Strongly correlated electron systems have been one of the most
important topics in theoretical solid state research. The major
challenge is that the interesting features occur in the regime of
intermediate coupling strength, where perturbation theory does
not apply. The search for non perturbative approaches has been
intense in the last decades, leading now to some widely accepted
results, the first one being the choice of the Hubbard model as the
general framework to describe strong e–e correlation.

The Hubbard model, where electrons feel their mutual repul-
sion only when localized on the same site, captures the essential
physics of narrow band materials where the itinerant character of
valence electrons coexists with strong local correlations respon-
sible of spectroscopic features such as satellites, band-narrowing,
and opening, in some cases, of a Mott-Hubbard gap. Traditionally,
many-body theories have been formulated for very simple mod-
els that are believed to contain the relevant physics of a particular
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phenomenon but are very far from true materials; only recently
the attention has been devoted to approaches that allow to com-
bine the ideas and methods of many body theory with a realistic
description of the system.

A  variety of non-perturbative techniques have been proposed
during the years to tackle this problem, ranging from dynamical
mean field theory (DMFT) [2,3], Gutzwiller variational method on
top of local density functional approximation (LDA+G) [4–6], 3-
body scattering (3BS) theory [7–11]. In all these method the single
particle multi-orbital Hamiltonian is supplemented by the local
Coulomb interaction among electrons. LDA+G relies on an ansatz
for the ground state wave function where the weight of the ener-
getically unfavored configurations containing double occupancies
is reduced. In DMFT the lattice problem of the Hubbard model is
mapped onto a single-impurity model embedded in a fermionic
bath whose structure has to be determined self-consistently. This
mapping is an exact solution of the Hubbard Hamiltonian in the
limit of infinite spatial dimensions. The LDA+DMFT scheme is
presently implemented in many DFT-band structure packages and
is one of the most widely used techniques to compute electronic
structures of strongly correlated solids.

In the 3BS approach the interacting many-body state is
expanded on the configurations obtained by adding single elec-
tron-hole (e-h) pairs to the ground state of the single-particle
Hamiltonian. The response of the interacting system to the cre-
ation of one hole is then described in terms of interactions between
configurations with one hole plus one e-h pair, giving rise to mul-
tiple h-h and h-e scattering. The advantage of 3BS with respect to
the above mentioned approaches is to provide a rather intuitive
interpretation of the effect of electron correlation on one electron
removal energies in terms of Auger-like relaxations. In the follow-
ing we will mainly concentrate on this approach, presenting in
some detail the underlying theory. Interestingly the results of DMFT
and 3BS in many cases are quantitatively very similar, as we  will
show.

Among the non-perturbative methods that are used to augment
band structure with on-site correlations, schemes based on cluster
formalisms are worth mentioning. These so-called quantum clus-
ter (QC) theories [12] share the basic idea to solve the problem
of many interacting electrons in an extended lattice by a divide-
et-impera strategy, namely solving first the many body problem
in a subsystem of finite size and then embedding it within the
infinite medium. The embedding procedure can be variationally
optimized as in the dynamical cluster approach [13] and cellular
dynamical mean field theory (CDMFT) [14,15]. Even neglecting self-
consistency in the embedding procedure the method, that in this
case has been called cluster perturbation theory (CPT)[16,17], gives
access to non trivial many body effects, reproducing exactly both
the limit U/t = 0 (non-interacting band limit) and U/t =∞ (atomic
limit); for intermediate values of U/t CPT opens a gap in metallic
systems at half occupation [17,18]. QC approaches account for the
momentum dependence of many-body corrections (self-energies)
more appropriately than DMFT or 3BS and for this reason they
should provide a more accurate description of quasiparticle disper-
sion. However QC approaches have been mostly applied to model
systems and only few quasiparticle calculations for realistic sys-
tems have been reported up to now [19,20].

We will restrict to the simplest examples of materials where
e–e correlation plays a crucial role, namely transition metals and
transition metals mono-oxides. The article is organized as follows:
in Section 2 we will introduce the essential many body concepts
and the details of 3BS theory. This will allow us to clearly identify
the dependence of correlation effects on band occupation and on
spin-polarization. The results for transition metals and transition
metal oxides will be presented in Section 3. Section 4 is devoted to
open problems and outlook.

2. Beyond the one-electron picture

2.1. Basic many-body concepts

The starting point is the generalized Hubbard Model described
by the Hamiltonian where electrons are itinerant – they hop from
site to site and are characterized by a band structure dispersion –
but at the same time experience mutual repulsion when localized
on the same site
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destruction and creation oper-
ators. Here �i˛ and ti˛,jˇ are the intra- and inter-atomic matrix
elements of the one-particle Hamiltonian and U˛ˇ, J˛ˇ are on-site
Coulomb and exchange terms. Notice that for a single orbital U = J
and Hamiltonian (1) reduces to the standard Hubbard model where
only electrons of opposite spin experience an on-site repulsion.

We are interested in the excitation energies of the system when
an electron is either removed (like in a photoemission experiment)
or added (like in inverse photoemission). These excitation energies
correspond to differences between energies of the extended system
with a variable number of particles, namely EN

0 − EN−1
n and EN+1

n −
EN

0 respectively, where EN
0 is the ground state energy of N interacting

electrons and EN±1
n is any excited state of the same system with one

particle added/removed.
In the absence of e–e interaction, these total energies are a

sum of single particle eigenvalues and the excitation energies triv-
ially correspond to individual single particle eigenvalues. This is no
more true for interacting systems. In this case the excitation ener-
gies are obtained, according to many-body theory, as the poles of
the one-particle Green’s function describing the propagation of an
added/removed electron

G(k, ω) = 1
ω − �n

k
− �(k, ω)

(2)

Here �n
k

are the single-particle band energies and �(k, ω)  is the
self-energy correction to them. It embodies all many-body interac-
tions and is the quantity to be calculated.

The poles of G(k, ω) occur at ω = �n
k

+ �(k, ω).  Since self-energy
turns out to be a complex function its effect is twofold: its real part
shifts the energy position of the quasiparticle excitations (the band
eigenvalues that are in this sense “renormalized” by the interaction)
and its imaginary part gives a finite life-time to them. Only long-
lived excitations correspond effectively to quasiparticle excitations
and appear as sharp maxima of the spectral function

A(k, ω) ≡ 1
�

ImG(k, ω) (3)

On the contrary when the poles occur far from the real axis, the
life-time of the excitation is short, the spectral weight is spread
out on a large energy window and no quasiparticle – no long
lived-excitation – exists any more. These two opposite situations,
corresponding to quasiparticle renormalization and quasiparticle
quenching,  are illustrated in Fig. 1.

The calculation of self-energy requires inevitably approxima-
tions. In order to define them it is useful to consider other exact
representations of the one-particle Green’s function. The Lehman
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