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a  b  s  t  r  a  c  t

We  compute  low-energy  optical  energy  loss  spectra  for the  elemental  solids  zinc  and  selenium,  and
for  the  binary  compound  zinc selenide.  The  optical  data  are  transformed  via  a constrained  partial-pole
algorithm  to  produce  momentum-dependent  electron  energy  loss  spectra  and  electron  inelastic mean
free paths.  This enables  a comparison  between  the  electron  scattering  behaviour  in a  compound  solid
and  its constituent  elements.  Results  cannot  be  explained  by  aggregation  methods  or commonly  used
universal  curves,  and  prove  that  new  approaches  are required.  Our  work  demonstrates  new  capabilities
for  the  determination  of  fundamental  material  properties  for a range  of  structures  previously  inaccessible
to  established  theoretical  models,  and  at energy  levels  inaccessible  to  most  experimental  techniques.
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1. Introduction

The electron inelastic mean free path (IMFP) is one of the most
fundamental parameters describing electron transport in a mate-
rial. It defines the mean distance travelled by an electron between
successive inelastic collisions, and is crucial for quantitative analy-
sis of a variety of spectroscopic and imaging tools such as electron
energy loss spectroscopy (EELS), auger electron spectroscopy (AES),
elastic peak electron spectroscopy (EPES), and electron microscopy.
A strong body of literature exists, particularly from the last 35 years,
following the development of theoretical models used in the deter-
mination of IMFPs in elemental solids [1–4], and tabulations are
available across a broad energy range, typically from 50 eV to 30 keV
[5].

Recent experimental work, however, has raised questions about
the accuracy of these tabulations in the low energy regime, particu-
larly below around 120 eV [6–8]. Few tabulations quote any data at
all below 50 eV – an important region dominated by plasmon exci-
tations that has particularly significant effects on structural analysis
tools such as X-ray absorption fine structure (XAFS) analysis [9] and
low energy electron diffraction (LEED) [10]. Further, information
regarding IMFPs in compound structures generally must be inferred
from elemental tables following universal curves or aggregation
techniques [11].
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These problems are largely due to difficulties in accurately quan-
tifying the optical energy loss function (ELF) for a material in the
low energy region. The ELF may  be interpreted physically as the
relative probability of a material accepting an electronic excitation
with a given energy �ω and momentum �q, and is expressed in
terms of the complex dielectric function �(q, ω)  = �1(q, ω) + i�2(q,
ω) following

ELF = Im
[ −1
�(q, ω)

]
= �2(q, ω)

�1(q, ω)2 + �2(q, ω)2
(1)

This quantity is not to be confused with the energy loss spec-
trum, which describes the response of the incoming particle, rather
than the response of the absorbing/scattering material. The ELF is
said to be the optical ELF in the limit q → 0, due to the small momen-
tum supplied by a photon relative to an energetic electron. Modern
theories, including the full Penn algorithm [5], partial pole models
[12], and self-energy/Green’s function approaches [13] all rely on
transforms of the optical ELF in order to estimate the IMFP.

Optical ELF data used in IMFP calculations have previously
been sourced almost exclusively from experimental data, with the
optical transmission and reflection measurements of Hagemann
et al. [14] and the exhaustive compilation of Palik [15] being most
commonly cited. In recent times REELS measurements have also
provided experimental optical ELFs, which have sometimes shown
significant disagreements with the aforementioned tabulated data
[16].

These tabulations are often inconsistent, do not typically
provide uncertainties, and do not generally cover all elemental
solids, let alone any useful range of compounds. It is therefore
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essential that a theoretical framework be defined in order to
provide a generalised approach to optical ELF, and subsequent
IMFP, determination. We  have made developments in the applica-
tion of density functional theory (DFT), which enables calculations
of a range of optical properties at low excitation energies for peri-
odic systems [16]. In this work we utilise those developments
in a study of the binary compound zinc selenide, enabling not
only the first ever published determination of the IMFP of ZnSe,
but also an analysis of the relationship between the optical and
electron energy loss properties of a binary material and those of
its constituent elements. This allows us to critically investigate
longstanding assumptions regarding the aggregation of IMFPs for
compounds and mixtures, and demonstrates the value of a purely
theoretical approach for the detailed study of a more general class
of materials.

2. Theory

The optical dielectric function for a material with complex band
structure, such as a periodic solid, is commonly expressed as a
summation of terms corresponding to the dielectric response of
an ensemble of nearly-free electron gases. The basic theory for the
quantum-mechanical free-electron gas is given by Lindhard [17].
One can utilise Lindhard dielectric functions to construct the solid-
state optical dielectric function following [18]

�(0,  ω) = 1 + lim
q→0

4�e2

q2

∑
n,n′,k

f 0(k) − f 0(k + q)
En′ (k + q) − En(k) − �ω

|Mn,n′ (k, q)|2

(2)

where the Lindhard expressions, characterised in terms of the
Fermi distribution f0, are modulated by a series of transition matrix
elements Mn,n′ (k, q). These terms can be expressed approximately
as

Mn′,n(k, q) = 〈n′, k|e−iq ·  r|n, k + q〉 (3)

The detailed procedure for the evaluation of Eq. (2) has been
developed by Ambrosch-Draxl and Sofo [18] and implemented into
a module for the band structure package WIEN2k [19]. WIEN2k
utilises a self-consistent field algorithm to determine electron
eigenstates |n, k〉 for periodic structures following a linearised aug-
mented plane-wave (LAPW) implementation of Kohn–Sham DFT.
The Kohn–Sham equation is given by(

− �

2m
∇2 + VNe + Vee + Vxc

)
  = E  (4)

where the potential components correspond to the
nuclear–electron interactions (VNe), electron–electron interactions
(Vee), and exchange and correlation (Vxc). These components can
be evaluated as functions of local electron densities, alleviating
the need for consideration of pair-wise electron interactions – an
intractable problem for a solid.

With this framework in place one can determine the opti-
cal dielectric function �(0, ω) and consequently the optical ELF
Im[− 1/(�(0, ω))]. As mentioned, the transformation of the opti-
cal ELF is critical for the evaluation of the electron IMFP. Here we
utilise a partial pole transformation [12], which utilises the natural
q-dependence of the Lindhard theory to obtain the momentum-
dependent ELF Im[− 1/(�(q, ω))]. To wit:

Im
[ −1
�(q, ω)

]
=

∑
i

AiIm

[
−1

�L(q, ω; ωp = ωi)

]
(5)

where �L(q, ω) is the Lindhard dielectric function. The principal
defining parameter for a Lindhard function is the plasma frequency
ωp which, in the partial pole model, may  take on a number of val-
ues ωi resulting from the different local free-electron gas densities

that are considered to make up the scattering material. The relative
amplitudes of the Lindhard terms at different plasma frequencies
are given as Ai, and these may  be evaluated using the requirement
that the momentum-dependent ELF matches that calculated in the
optical limit via DFT:

Im
[ −1
�DFT(0,  ω)

]
=

∑
i

AiIm

[
−1

�L(0,  ω; ωp = ωi)

]
(6)

Since the Lindhard dielectric function leads to delta function
components in the optical ELF, this criterion is straightforward to
fulfil by allocating closely spaced, periodic ωi values and defining
the amplitude parameters Ai following

Im
[ −1
�DFT(0,  ω)

]
=

∑
i

Ai�

2ω
ı(ω − ωi) (7)

This enables us to build a complete electron ELF Im[− 1/(�(q,
ω))]. Recalling that this function is interpreted physically as a rela-
tive probability of an excitation occurring in the scattering material,
we express the electron IMFP in terms of the ELF following the
well-known relation [3]:

�−1(E) = �

a0�E

∫ ((E−EF )/�)

0

∫ q+

q−

1
q

Im
[ −1
�(q, ω)

]
dq dω (8)

The limits of integration for the momentum transfer, q±, are
given by

q± =
√

2mE
�2

±
√

2m
�2

(E − �ω) (9)

following kinematic requirements with respect to the energy trans-
fer of the incoming electron.

3. Results

We  first examine, in Fig. 1, the optical ELFs determined via
DFT for zinc, selenium, and zinc selenide. We  note that the opti-
cal response of solids is often highly dependent on the crystal or
molecular structure, and that the crystal systems of these three
materials - hexagonal for zinc, trigonal for (grey) selenium, and
cubic zincblende for zinc selenide – are highly varied.

Despite these variations, we  are surprised to find that the optical
ELF of ZnSe is qualitatively representative of an aggregate of the
responses of Zn and Se. Specifically, while the main feature of the
Zn loss function is a clear double-peak at 13 eV and 19 eV, and the
Se spectrum exhibits a well-defined single peak at 20 eV, the ZnSe
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Fig. 1. Optical energy loss functions of zinc, selenium, and zinc selenide determined
using the WIEN2k implementation of density functional theory. Despite substantial
structural differences between the three materials, the major peak of ZnSe is quali-
tatively similar to the aggregate heights, widths, and energy positions of the major
peaks associated with its component elements.
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