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a  b  s  t  r  a  c  t

Nuclear  resonant  scattering  of synchrotron  radiation  has  become  an  established  tool  within  condensed-
matter  research.  Synchrotron  radiation  with  its  outstanding  brilliance,  transverse  coherence  and
polarization  has opened  this  field  for many  unique  studies,  for fundamental  research  in  the  field  of
light-matter  interaction  as  well  as  for materials  science.  This  applies  in particular  for  the  electronic  and
magnetic  structure  of very  small  sample  volumes  like micro-  and  nano-structures  and  samples  under
extreme  conditions  of  temperature  and  pressure.  This  article  is  devoted  to the  application  of  the  tech-
nique  to  nanomagnetic  systems  such  as thin  films  and  multilayers.  After  a  basic  introduction  into  the
method,  a number  of  our experiments  are  presented  to illustrate  how  magnetic  spin  structures  within
such layer  systems  can  be revealed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Atomic nuclei can be very sensitive probes of condensed matter
properties. A number of spectroscopic techniques have been devel-
oped to probe condensed matter via nuclear hyperfine interactions,
constituting the field of nuclear condensed matter physics [1,2]. A
very prominent method in this field is Mössbauer spectroscopy
that probes internal magnetic and electric fields in the sample by
analysing the energetic hyperfine splitting of the nuclear levels via
absorption of �-radiation. Traditionally, this technique is applied
in the energy domain where the radiation from a monochromatic
radioactive source is Doppler tuned to measure the absorption
spectrum around the nuclear resonance with nano-eV resolution.
The hyperfine interaction of the nuclei in the sample typically lifts
the degeneracy of the nuclear levels that manifests as a splitting
and/or broadening of the absorption line(s).

Synchrotron radiation effectively allows one to perform the
Fourier transform of Mössbauer spectroscopy from the energy
domain into the time domain: the radiation is energetically broad
(in contrast to the mono-energetic �-radiation emitted by a
radioactive source), and it comes in pulses with a duration of
50–100 ps (in contrast to the continuously emitting radioactive
source). Thus, these pulses excite all hyperfine-split resonances in
the sample at the same time. In the subsequent coherent decay the
interference of the emitted waves leads to a temporal beat pat-
tern, very similar to the temporal acoustic beats of slightly detuned
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tuning forks. From such a beat pattern the hyperfine interaction
parameters of the nuclei in the sample can be deduced.

Within the natural linewidth of the Mössbauer transition, the
brilliance of synchrotron radiation sources exceeds that of radioac-
tive sources by several orders of magnitude. This was realized early
by Ruby [3] and the first observation of the time-based analog
of Mössbauer spectroscopy a.k.a. nuclear resonant scattering of
synchrotron radiation was reported by Gerdau et al. [4] in Bragg
scattering geometry and later by Hastings et al. [5] in forward scat-
tering geometry. Since then, the method rapidly developed and is
now available at many 3rd-generation synchrotron sources (ESRF,
APS, Spring8, PETRA III) around the world, covering a broad range
in all fields of the natural sciences [2,6].

2. Basic principles of nuclear resonant scattering

Due to the narrow nuclear resonance width in the range of
neV–�eV, the scattering process takes place on time scales ranging
from �s to ns. This allows for a discrimination of the resonantly
scattered radiation from the non-resonant charge scattering and
fluorescence that proceeds on time scales below 10−15 s. A syn-
opsis of the method of time-resolved coherent nuclear resonant
scattering is given in Fig. 1.

The transmission of X-rays through a slab of material that con-
tains resonant nuclei can be described in a straightforward fashion
via the energy-dependent index of refraction

A(z, ω) = exp[in(ω)k0z]A0.
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Fig. 1. Principle of coherent nuclear resonant scattering in forward direction. Transitions between nuclear levels are excited simultaneously by synchrotron radiation pulses
at  t = 0. In this example, three selected waves with slightly different frequencies are emitted from the decaying nuclei in the sample. Their superposition leads to quantum
beats  in the temporal evolution of the decay. This is illustrated here by overlaying three wavetrains with slightly different spatial frequencies, leading to a Moiré pattern. The
intensity modulation of this pattern corresponds to the temporal quantum beats that are detected with a time-resolving detector like an avalanche photodiode (APD).

which gives the amplitude of the radiation field in depth z of the
sample. A0 is the amplitude of the incident radiation field. The index
of refraction n is related to the forward scattering length M via

n(ω) = 1 + 2�

k2
0

∑
k

�kMk(ω),

with pk being the number density of the kth atomic species in
the sample. These equations can be generalized to a multitude
of scattering problems, ranging from simple forward scattering
to anisotropic optics, thin-film reflection and Bragg diffraction
from crystals and gratings [9]. The number N of open scattering
channels determines the dimension of M,  i.e., M is a scalar quan-
tity for isotropic (polarization-independent) forward scattering, a
2 × 2 matrix for anisotropic (polarization-dependent) forward scat-
tering, a 4 × 4 matrix for anisotropic (2-beam) Bragg diffraction
which includes also nuclear resonant scattering in grazing inci-
dence geometry. Correspondingly, the index of refraction n(ω) is
a N-dimensional matrix.

Correspondingly, the quantities A0 and A(z) are vectors with
N components that describe the amplitudes of the radiation field
in the N scattering channels. This formalism naturally contains all
multiple scattering processes within the sample, i.e., the resulting
radiation field A(z) is a self-consistent solution to the scattering
problem within the dynamical theory of X-ray scattering.

The specific interaction of the photons with the atoms in the
material is contained in the scattering length M.  It is well known
that optical properties of a system change drastically if the photon
energy approaches an atomic resonance. This is valid for the com-
plete spectral range from the infrared into the hard X-ray regime.
The remarkable features of X-ray scattering from inner-shell reso-
nances have been discovered and exploited when high-brilliance
synchrotron radiation became available [10,11]. This applies for
X-ray scattering from nuclear resonances as well [4,6,12].

Fig. 2 shows the real and imaginary parts of the forward scatter-
ing amplitude of 57Fe over an energy range from 6 keV to 16 keV.
Around 7 keV one observes the electronic K-edge of the mate-
rial as it results from excitation of an electron in the K-shell into
the continuum. At a photon energy of 14.4 keV one observes an
extremely sharp feature that results from resonant excitation of
the 57Fe nucleus. The shape of this resonance becomes apparent
only if one blows up the energy scale to the neV regime. The verti-
cal axis is scaled in units of the classical electron radius r0 which is

the scattering length of a single electron. Thus it appears that near
the resonance the scattering strength of the nucleus corresponds to
an atom with Z = 200! This means that out of the small energy range
around the resonance a very strong scattering signal can arise that
exceeds that of electronic resonances by far [2].

Near the resonance the scattering amplitude of an atom with a
single nuclear resonance can be written as

M(ω)  = E(ω) + N(ω),

where E and N are the electronic and nuclear contributions to the
scattering length, respectively:

[E(ω)]�v = (�� · �v)[−Zr0 + f ′
e + if ′′

e ]

= (�� · �v)
[
−Zr0 + f ′

e + i
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]
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n + if ′′
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f0
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where Z is the atomic number, r0 the classical electron radius, and
� is the total absorption cross section. (��, �v) are the vectors
of the polarization basis. Their scalar product that appears in the
expressions above indicates that the scattering process conserves
the polarization, i.e., the 2 × 2 matrices E and N are diagonal. This
is in general not the case if the nucleus is subject to an electric or
magnetic hyperfine interaction, as we  shall see below.

The nuclear scattering length N(ω) is given here for a
single, unsplit resonance line (i.e., no hyperfine interaction).
x = 2(E  − E0)/� 0 denotes the deviation of the energy from the exact
resonance energy E0 measured in units of the natural linewidth � 0
of the transition. f0 expresses the oscillator strength of the nuclear
resonance:

f0 = fLM

2k0

2Ie + 1
2Ig + 1

1
1 + ˛

where fLM is the Lamb–Mössbauer factor that describes the rela-
tive fraction of photons that are elastically scattered (i.e., without
recoil). Ie and Ig are the spins of the ground and excited nuclear
state, respectively, and  ̨ is the coefficient of internal conversion.

For the 14.4 keV transition of 57Fe we have  ̨ = 8.2, Ig = 1/2, Ie = 3/2
and k0 = 7.3 × 1010 m−1. In ˛-Fe at room temperature we  have



Download	English	Version:

https://daneshyari.com/en/article/5396121

Download	Persian	Version:

https://daneshyari.com/article/5396121

Daneshyari.com

https://daneshyari.com/en/article/5396121
https://daneshyari.com/article/5396121
https://daneshyari.com/

