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a  b  s  t  r  a  c  t

A  matrix-based  analytical  solution  to the  inversion  and regularization  of  ARXPS  data  is presented  and
its  characteristics  are  explored.  For  each  of the  4 different  input  concentration  depth  profiles  tested,  50
different sets  of noisy  ARXPS  data  are  simulated.  The  profiles  are  subsequently  recovered  using  both  the
novel matrix-based  solution  and  conventional  numerical  methods.  It  is  observed  that  the  matrix-based
method  was  several  orders  of  magnitude  faster,  and capable  of generating  profiles  equivalent  to  those
obtained  by  numerical  means,  under  almost  all  conditions.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Angle-resolved X-ray photoelectron spectroscopy (ARXPS) is a
non-destructive method capable of assessing concentration depth
profiles at a sample surface [1].  An XPS analysis is undertaken at
a number of different photoemission angles, defined as the angle
between the normal to a sample surface and the axis of the ana-
lyzer optics. Since electrons are attenuated as they travel through
the sample, increasing the angle, which increases the photoelectron
escape path length, has the effect of pushing the sampling volume
towards shallower depths. Results obtained from a range of differ-
ent angles can then be used to reconstruct the concentration depth
profile through a series of mathematical manipulations.

The recovery of such profiles, however, is equivalent to
the inversion of a Laplace transform, a famously unstable “ill-
conditioned” problem [2–4], in which even small amounts of noise
can cause large and physically unsound spikes in the profile,
resulting from the “over-fitting” of the ARXPS data. The common
approach to combatting this issue is regularization [2–4], which
seeks to find a solution that simultaneously complies with the input
data and an assumption about the smoothness of the extracted
depth profile. More precisely, regularization involves finding a pro-
file which minimizes the so-called “joint function”:

min{residual norm +  ̨ solution norm} (1)
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In this joint function, the residual norm is the sum of the
squared differences between the input data and the intensity or
intensity ratio obtained from the proposed profile, a smaller resid-
ual norm indicating a better fit to the ARXPS data, while the
solution norm is a measure of the smoothness of the proposed
profile, a smaller solution norm signifying a smoother or flat-
ter profile. The regularization parameter  ̨ balances the relative
importance of the two norms, and must be selected so as to pro-
duce the best combination of fitting the data and smoothing the
profile.

Progress in this field has arisen from methods and techniques
borrowed from the inverse theory literature and subsequently
adapted to the details of the inversion of ARXPS data. A case
in point is regularization itself, using both Tikhonov regulators
(mathematical functions for the solution norm) [5],  and the Maxi-
mum  Entropy [6,7] regulators employed successfully in astronomy.
Other examples include the L-Curve criterion for choosing the
value of regularization parameter [8–10],  as well as variants of the
Backus–Gilbert method [2,11].

More recently, Babanov et al. [12] have demonstrated the
applicability of the matrix-based Tikhonov solution [13,14] to the
inversion of ARXPS data. Many studies [8–10,15–17] focus on the
numerical minimization of the joint function, with the residual
norm defined in terms of peak intensity ratios or apparent con-
centrations in at.% and with a positivity constraint imposed on the
possible concentration values in the profile. However, if peak inten-
sities are used rather than ratios, and if constraints are removed, the
Tikhonov solution allows the minimization problem to be solved
analytically using a matrix-based approach.
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In this paper, the characteristics of a Tikhonov solution will be
explored using a novel matrix-based model, and will be compared
to the characteristics of a well-established numerical method. Spe-
cial attention will be given to the effects of using intensities rather
than intensity ratios, as well as to the removal of positivity con-
straints on the concentration values. Noisy ARXPS data from four
different profiles (two curved exponential decay profiles and two
sharper step profiles) will be simulated and analyzed. These sim-
ulations will be repeated 50 times in order to observe trends
and compute averages. Finally, the benefits and drawbacks of this
matrix approach will be discussed, as well as the implications for
ARXPS profile reconstruction in general.

2. Methodology

2.1. Intensity model

The purpose of this paper is to investigate the mathematical
aspects of inversion and regularization, rather than the physics of
a real measurement. Therefore, certain simplifications were made:
elastic scattering, which may  play a significant role in the analysis of
a real sample at photoemission angles in excess of 60◦, was  ignored,
and the starting point for the calculations was the Beer–Lambert
equation (i.e. the straight-line approximation [18]), given by

I(�)=sK(�)F�
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in which I(�) is the peak intensity at a photoemission angle �. The
concentration depth profile of the element giving rise to the peak
is denoted by c(z), with z representing the depth into the sam-
ple perpendicular to the surface. The counting time, which serves
to increase the intensity, is quantified by the scale factor s, while
K(�) represents a set of instrumental and geometric factors and
F is the analyzer transmission/detector efficiency function. Other
terms include the photoionization cross-section (�), the photoelec-
tron inelastic mean free path (�), the asymmetry parameter of the
angular distribution of photoelectrons excited from a given atomic
orbital (ˇ) and the angle between the X-ray source and the detector
(�).

A number of additional assumptions are made. The solid angle
of collection of photoelectrons is taken to be negligibly small, and
the transmission function F is assumed to be flat with respect to
energy and equal to unity. It was also assumed that the instrumen-
tal/geometric factor K(�) can be fully accounted for (as supported
by the recent work of Herrera-Gomez et al. [19]), and was  therefore
set to unity for simplicity. Finally, the value of  ̌ was  2 for all peaks
and � was set to � + 15◦ in this simplified simulation of a “parallel
collection” geometry.

Using the concentration gradient model [20], which
assumes constant concentration gradients between n discrete
concentration-depth data points (ci, zi), with z1 at the surface and a
constant concentration in the bulk, the intensity can be calculated
as follows:
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2.2. Numerical approach

A typical approach [8–10,15–17] is to use the “apparent” con-
centration as a function of photoemission angle at.% (�). For

instance, for the case of oxygen in a sample containing only oxygen
and carbon, and with F set to unity, the apparent concentration is

at.%(�)oxygen = 100(I(�)oxygen/�oxygen)

(I(�)oxygen/�oxygen) + (I(�)carbon/�carbon)
(4)

The residual norm is then defined as the sum of the squared
differences between the input and calculated apparent concentra-
tions, while the solution norm is some function of the proposed
concentration profile.

By combining intensities in such a way, certain factors, such as
the scale factor s and the instrumental and geometrical factor K, are
eliminated by cancellation. However, the minimization of the joint
function must be performed numerically. In this study, a numerical
global minimization algorithm written in Mathematica 8 (Wolfram)
was used. It will be shown, however, that by redefining the problem
in terms of peak intensities, the minimization can be performed
analytically.

2.3. Matrix-based approach

If the concentration values in the profile and the peak intensities
are given by the vectors c = [c1, . . . , cn] and I = [I(�1), . . . , I(�m)],
there exists a matrix A, referred to as the coefficient matrix, such
that

I = A · c (5)

If the depth spacing (t) between concentration values is kept
constant, the elements of the coefficient matrix A (an m × n matrix,
where m is the number of emission angles and n is the number of
points in the concentration profile) corresponding to a matrix form
of the linear segment model [20] are given by
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in which the term fi is given by the following expression:

fi = �
3
2

sin2(�i + 15)
�2 cos2 �i

t
(7)

This A matrix, which depends predominantly on the photo-
electron peaks involved (through � and �), quantifies the relative
importance of each profile point (i.e. how much it contributes to
the calculated peak intensity) as a function of the angle �, indepen-
dently of the concentration profile. This relative importance arises
primarily from the exponential decay of sensitivity with depth of
XPS, but also depends on the model used. For instance, using the
concentration gradient model, the first point contributes solely to
one gradient rather than two, and the concentration at the last point
extends to infinite depth. As such, these points will be less and
more important, respectively, to the calculated intensity than the
exponential decay of sensitivity would otherwise dictate.

The residual norm can be calculated by taking the sum of the
squared differences between the noisy input intensities as a func-
tion of � and the values calculated from the A matrix (Eq. (5)), which
is equivalent to the square of the Euclidean norm. Since each ele-
mental profile has its own residual norm, the total residual norm,
equal to the sum of the individual residual norms, will be used in
this study.

residual norm =
i=m∑
i=1

(Ii − Ai · c)2 = ‖I − A · c‖2 (8)
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