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a  b  s  t  r  a  c  t

Starting  from  posited  input  depth  profiles  of  silicon  oxide  on  silicon,  100  sets  of noisy  simulated  ARXPS
data  were  created  for each  oxide  layer  thickness  of  3,  6, 9, 12,  15, 18,  21, 24  and  27 Å. Oxygen  depth  pro-
files  were  then  recovered  from  the  noisy  simulated  data  using  regularized  inversion  methods,  including
maximum  entropy  and  Tikhonov  regularization.  Three  regularization  parameters  were  used:  one  deter-
mined  by  the  S-curve  method,  one  determined  by the  L-curve  method  and  a third  corresponding  to the
closest  correspondence  between  the  input  and  extracted  profiles.  The  various  regularization  schemes
evaluated  were  ranked  with  respect  to  their  ability  to  reproduce  the  input  profile.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The extraction of depth profiles from ARXPS data, a mathe-
matical manipulation equivalent to an inversion of the Laplace
transform, is an “ill-conditioned” problem, as the shape of the pro-
file is highly sensitive to random counting noise in the data [1].
The main problem is “over-fitting”, in which unphysical spikes
and steps appear in the derived profile in order to fit the noise
in the data. A procedure known as “regularization” [2–4] is gen-
erally adopted to deal with this issue, and we have investigated
this approach in some detail in a previous study [5],  by means
of synthetic data generated from a posited profile resembling an
exponential decay with respect to depth.

In a “regularized” inversion the value of a mathematical expres-
sion known as the “joint function” is minimized by optimizing the
parameters defining the extracted profile shape. The joint function
has the form {residual norm +  ̨ solution norm}. The residual norm
is a measure of the misfit between the experimental data and the
values calculated from a proposed depth profile. A smaller resid-
ual norm corresponds to a better fit to the ARXPS data. The solution
norm quantifies the complexity of the proposed depth profile, the
most widely used example being the profile cross-entropy, used in
the so-called maximum entropy (MaxEnt) method [6].  A smaller
solution norm generally corresponds to a smoother profile shape.
The “regularization parameter”  ̨ balances the contribution of each
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norm to the joint function, with the aim of achieving the best overall
fit to the data with the smoothest overall profile.

In a recent paper [5] we generated synthetic data, with differ-
ent levels of noise added, from an “exponential decay” input profile
shape. We  then inverted these noisy data using various mathemat-
ical functions for the solution norm (regulators), and compared the
extracted profiles with the input profile, as a function of the amount
of added noise. Because the result obtained from any one particu-
lar set of ARXPS data is really just anecdotal, we ran the calculation
100 times per noise level, and averaged the results. We  drew several
conclusions from that study:

(1) The regularization schemes contributed to the extraction of
profiles that resembled the input profile more closely than
those obtained from a calculation that was  not regularized.

(2) The regularization schemes stabilized the extracted profile
shape – profiles extracted using a regularized calculation were
more like one another than profiles extracted by means of a
calculation that was  not regularized.

(3) The operand in the regulator (concentrations, slopes or cur-
vatures in the profile) was  more important to the result than
whether or not the regulator calculated a profile entropy.

(4) The extent to which statements (1) and (2) were true depended
however on the particular regulator; regulators based on slopes
or curvatures in the profile performed better than those based
on concentrations.

Because these observations were made for a particular input
profile shape, an obvious question arises: do they hold true for other
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input profiles as well? In particular, it would be interesting to con-
duct a similar study using an input profile more closely resembling
a classic “overlayer/substrate” structure. We  report the results of
such a study in this paper.

Using Mathematica software (Wolfram), we synthesize mul-
tiple sets of noisy ARXPS data from known input depth profiles,
intended, within the limitations imposed by the spacing of profile
points in the model, to represent oxide layers of various thick-
nesses on a substrate. We  then invert these data using various
regularization schemes in an attempt to recover the original pro-
files. Profiles composed of discrete layers in the past been a popular
test for the inversion of ARXPS data [7–11]. As the input profiles
are known, we can rank the recovered profiles, and hence the
regularization schemes used to generate them, in a quantitative
manner.

In the previous paper we used the “S-curve method” to deter-
mine an optimum value for the regularization parameter  ̨ from the
noisy data themselves, stating that this procedure was  intended
as a replacement for the well-known but less tractable “L-curve
method”. In this paper we again employ the S-curve method
but also describe and deploy a procedure intended to auto-
mate a true L-curve method for the extraction of a value for

 ̨ from the data. We  then demonstrate the equivalence of the
S-curve and L-curve methods employed in terms of the results
obtained.

Even if the L-curve method is well-known, and the S-curve
method equivalent to it, the question remains: is the profile
extracted using the value for  ̨ determined via the L-curve crite-
rion the best profile that could have been extracted from those
data? Could we have extracted a better profile using a different
value for ˛? Because we know the exact parameters of the input
profiles used to generate the noisy data, we can address this ques-
tion in this paper. We  will show that for two regulators based on
concentrations, including the popular maximum entropy regulator,
the optimum profile is extracted about half the time, whereas for a
regulator based on slopes, better profiles could have been extracted
in 90% of cases.

2. Generation of noisy simulated data

In order to limit the level of abstraction in this study, we will
label the two atom types included in the simulations “oxygen” and
“silicon”, so as to nominally simulate a silicon oxide layer on a
silicon substrate, however, we choose to ignore the elastic scat-
tering of photoelectrons [12,13] in our simplified physical model.
In the case of a real measurement, elastic scattering cannot usu-
ally be neglected at photoemission angles higher than 60–65◦.
In this work however we are only interested in mathematical
aspects of the inversion problem and not in the physics of a real
measurement, so the starting point for our calculations is based
on the familiar Beer–Lambert equation (i.e. the “straight-line”
approximation)
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I(�) is the peak intensity at the photoemission angle �, defined as
the angle between the normal to the sample surface and the axis
of the photoelectron collection optics. s is a scale factor, analogous
to the total counting time in a real measurement. K(�) represents
a combination of instrumental and geometric factors, such as the
X-ray flux and the analysis area; K is taken to be the same for
all peaks at a given photoemission angle. F contains the analyzer
transmission function, whose value is particular to the photoelec-
tron kinetic energy, and the detector efficiency. The value of �, the

photoionization cross section, is particular to a given atomic orbital.
c(z) is the composition depth profile of the element giving rise to
the peak; in this work, we  will assume a constant total atom density
as a function of depth and express the concentration of each con-
stituent element in atomic percent. z is the depth into the sample
perpendicular to the surface, and � is the photoelectron inelastic
mean free path, whose value is particular to the photoelectron
kinetic energy. The value of � will also be specific to the sam-
ple composition; in this paper, however, we  make the simplifying
assumption that the value of � is negligibly sensitive to variations
in the atom concentrations.  ̌ is the asymmetry parameter of the
angular distribution of photoelectrons in the dipole approxima-
tion (for free atoms) and � is the angle between the direction of
the exciting photon beam and the direction of the photoelectrons
detected [14].

We  make several more simplifying assumptions in our simula-
tion of a spectrometer with a “parallel collection” geometry [15].
The solid angle of collection of photoelectrons is taken to be negligi-
bly small, and sixteen � values evenly distributed between 24.875◦

and 81.125◦ were used. The function F is assumed to be flat with
respect to energy and equal to unity at all collection angles. The
Scofield photoionization cross-sections � were 0.955 for silicon (Si
2s peak) and 2.93 for oxygen (O 1s peak) [16]. The value of  ̌ was
2 for both these peaks, and � was  set to � + 15◦. The photoelec-
tron inelastic mean free paths were taken to be 23 Å (O 1s) and
32 Å (Si2s) calculated from the NIST IMFP database software [17].
As K will be eliminated by cancellation when we combine the sim-
ulated peak intensities to obtain apparent concentrations in at.%,
we do not need to consider it further. We  employ a ten-point lin-
ear segment model for the input depth profile, which is modeled in
terms of ten pairs of depth-concentration coordinates (zi,ci), with
the profile continuing to infinite depth at the concentration value
of the tenth profile point beyond the tenth profile point. The total
atom density (silicon plus oxygen) is assumed to be constant, so
that ci(silicon) = 100% − ci(oxygen). The zi were uniformly spaced
at 3 Å intervals with z1 = 0 being the sample surface. The synthetic
peak intensity is calculated as [18]
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using the appropriate values for silicon or oxygen for �, � and the
(zi,ci). The input oxygen profiles used in this paper, expressed as ten
(zi,ci) pairs, were flat at a value of 67% to a depth of 3, 6, 9, 12, 15,
18, 21 or 24 Å, dropping to 0% oxygen at the next profile point 3 Å
deeper. The “thickness” of this oxide layer is defined at the depth
at which the oxygen concentration first equals zero. To the “noise-
less” synthetic data, I(�)synth

silicon
and I(�)synth

oxygen, random noise is added,
to give 50 or 100 sets of noisy synthetic data (depending upon
the investigation, see below). The noise was made to obey Pois-
son statistics [19] with respect to the value of I. The noisy synthetic
data I′ is then combined to give a simulated set of ARXPS data in
terms of apparent concentration as a function of the photoemission
angle, at.%(�)synth, for example for oxygen

at.%(�)synth
oxygen = 100I′(�)synth

oxygen/�oxygen

I′(�)synth
oxygen/�oxygen + I′(�)synth

silicon
/�silicon

(3)

The Poisson noise, in terms of the standard deviations on the

I′(�)synth, i.e.
√

I′(�)synth, was propagated through this calculation
following Harrison and Hazell [19], to give the standard devia-
tion on at.%(�)synth. Because of the inclusion of the asymmetry
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