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The hemispherical deflector analyser revisited
II. Electron-optical properties
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Abstract

Using the basic spectrometer trajectory equation for motion in an ideal 1/r potential derived in Eq. (101) of part I [T.J.M. Zouros, E.P. Benis,
J. Electron Spectrosc. Relat. Phenom. 125 (2002) 221], the operational characteristics of a hemispherical deflector analyser (HDA) such as
dispersion, energy resolution, energy calibration, input lens magnification and energy acceptance window are investigated from first principles.
These characteristics are studied as a function of the entry point R0 and the nominal value of the potential V (R0) at entry. Electron-optics simulations
and actual laboratory measurements are compared to our theoretical results for an ideal biased paracentric HDA using a four-element zoom lens
and a two-dimensional position sensitive detector (2D-PSD). These results should be of particular interest to users of modern HDAs utilizing a
PSD.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

This article is the second part of an in depth investigation
focusing on the study of the orbits of non-relativistic charged
particles inside a hemispherical deflector analyser (HDA), as
well as on the electron-optical properties and optimal operation
characteristics of the HDA. The general case of a biased para-
centric HDA, i.e., an HDA whose entry is biased at a nominal
voltage V (R0) �= 0 and is paracentric lying at a radial position
R0 �= R̄ = (R1 + R2)/2, where R1 and R2 are the inner and outer
radii of the HDA, respectively, is considered. The conventional
HDA treated in the literature to date has typically V (R0) = 0
and R0 = R̄. Interest in such a biased paracentric HDA has been
prompted by recent articles [1–9] in which electron-optical sim-
ulations demonstrated improved focusing and therefore energy
resolution for such an HDA. The nature of the effect is attributed
to the strong fringing fields at entry. Towards the investigation
of this effect, we initially proceed with studying the trajectories
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of a charged particle in an ideal biased paracentric HDA, i.e, an
HDA free of fringing fields.

Thus, in the first review article [10,11] (from here on referred
to as paper I), we gave a general treatment of charged parti-
cle motion in the ideal potential Ṽ (r) = −k/r + c. The general
trajectory equations were obtained in analytic form for r as a
function of the deflection angle ω and the launching angle α.
In our treatment, the reference (or principal) ray describes an
elliptical trajectory starting at r(ω = 0) = R0 biased at Ṽ0 ≡
V (r(ω = 0) = R0) and exiting after deflection through �ω = π

at r(ω = π) = Rπ (see Fig. 3 and Eqs. (90) and (93) in paper I).
Conventional HDA trajectory equations [12–18] can be readily
recovered as the special case where R0 = Rπ = R̄ and Ṽ0 = Vp,
where Vp is the pre-retardation plate voltage of the analyser. The
finite potential at the HDA entry Ṽ0 was also found to introduce
non-negligible refraction. Thus, a formal treatment of refraction
at the idealized sharp potential boundary, represented by a step
function potential V (r, θ), was also included and the basic equa-
tion of the analyser was obtained as a function of either α or
α�, the entry angle after or prior to refraction, respectively. The
form written in terms of α� (see Eq. (I101)) was found to be sur-
prisingly simple, much simpler than the one obtained in terms
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of α (Eqs. (I99) and (I100) in Ref. [10,11]), arguing in favor of
using the form with α�.

In this paper we use the basic analyser trajectory equation
for motion in an ideal potential obtained in Eq. (I101) to investi-
gate the electron-optical properties of the generalized HDA such
as dispersion, energy resolution, energy calibration and energy
acceptance window. We again parameterize our results in terms
of the entry radius r = R0 and the nominal bias at entry Ṽ0. Our
results are also compared to electron-optics simulations using
the popular ion optics package SIMION [19–21] and to actual
laboratory measurements using our own biased paracentric HDA
[22–24]. Both SIMION results and real measurements include
the effects of the strong fringing fields, whose effects on the
electron-optical properties of the HDA are further discussed.

The reader is referred to paper I for the detailed definitions
and descriptions of the various variables and parameters intro-
duced. Here we maintain the same notation. For convenience, a
definition list of the symbols used here along with their values
for our own HDA are given in Table A.1 of the Appendix A.

2. Focusing and dispersive properties of an ideal 1/r

potential

The focusing properties of an ideal HDA have already been
discussed in many excellent treatments [12–18]. Here we give
a brief but generalized [14] approach. A basic optical layout of
the spectrograph is shown in Fig. 1. A beam of charged particles
emanates from a source of dimension ds at a pencil angle �αs
defined by the lens pupil entry dp and its distance l from the
source. The source (object) is focused by the lens onto the HDA
entry plane having a dimension �r0 (image) smaller than the
physical opening d0 of the HDA entry aperture (for 100% trans-
mission). Pre-retardation changes the energy of the central ray
from T at the source to t just prior to HDA entry. The image �r0,
which is associated with the maximum HDA entry half-angle α�

m
and αm (after refraction), is finally imaged after dispersion at the
exit plane of the HDA and is detected by a 2D-PSD.

Fig. 1. Schematic geometry of typical HDA spectrograph equipped with a focus-
ing/deceleration lens system and a 2D-PSD. The drawing has been simplified
by approximating the (thick) lens by a thin lens. The vertical dimensions are
particularly enhanced.

Since the HDA focusing properties can be studied from the
ray trace on the exit plane [8,9,25], an expression which gives
the position of the particle at the exit, as a function of its position
and direction at the entry and its reduced pass energy τ is needed.
This equation was derived in detail in paper I [10,11] (see Eq.
(I102)) to be:

rπ = −r0 + R0 (1 + ξ)

1 + (ξ/γ) (1 − τ cos2 α�)
, (ideal HDA) (1)

where (from I) r0 and rπ are the entry and exit radii, respectively,
of the particle trajectory. ξ ≡ Rπ/R0 is the paracentricity of the
HDA, with R0 and Rπ the entry and exit radius of the principal
trajectory, respectively. In practice, we shall always take Rπ to
be the mean radius of the HDA, i.e., Rπ = R̄ = (R1 + R2)/2,
however the symbol Rπ is maintained throughout for generality.
A charged particle having an initial energy T is decelerated prior
to dispersion through the HDA to a pass energy of t, so that
t ≡ T − q Vp. w is the nominal “tuning” energy, i.e., the energy
of the principal trajectory, after preretardation. Thus, the reduced
pass energy is defined as τ ≡ t/w. Finally, γ is defined such
that q Ṽ (R0) = (1 − γ) w. Note that, for a conventional HDA,
Ṽ (R0) = 0 and R0 = Rπ, so that ξ = 1 and γ = 1. Eq. (1) is
known [26] as the basic equation of the spectrograph.

For an ideal biased HDA one also needs to consider parti-
cle refraction at the HDA entry, as discussed in detail in I. In
our step potential model presented in I, refraction was found
to result in a change of both kinetic energy (Eq. (I B.21)) and
angle (Eq. (I B.22)) as the particle crosses the entry plane from
a potential V = 0 to one of V = V (r0). Thus, a particle with
kinetic energy K� = t and angle α� prior to refraction at entry,
will have after refraction, an energy K = t − q Ṽ (r0) and angle
given by sin α = √

t/K sin α�. For t = w and r0 = R0, we note
that K = w − q Ṽ0 = γ w and therefore α� ≈ γ α in the small
angle approximation. Thus, for γ > 1, K > K� and α < α�, the
particle will in general be accelerated to larger kinetic ener-
gies and refracted to smaller angles within the HDA. These
changes will influence somewhat the overall performance of the
HDA.

Next, we study the basic focusing and dispersion properties
of an ideal hemispherical spectrograph based on Eq. (1). The
effects of the strong fringing field [1,6–9] are only discussed in
as much as the results obtained for the ideal HDA disagree with
comparisons to SIMION simulations and laboratory measure-
ments.

2.1. Magnification, dispersion and angular aberrations

In general, the Taylor expansion of the change in exit radial
position �rexit up to first order in energy change and up to sec-
ond order in the angular terms takes the unique form for an
electrostatic analyser given by [12–14,26]:

�rexit ≡ M�rentry + D
�τ

τ
+ P1α

� + P2α
�2 + . . . (2)

In particular, using the symbols introduced here for the HDA
and after a deflection of 180◦ we may identify rexit with rπ and
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