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Abstract

We present a comparative study of multiple differential cross-sections in (e,3e) and (7y,2e) processes. We make use of initial states with different
angular and radial electron—electron correlation factors in a perturbative model, and a C3 wave function to describe the final state. We also compute
orthogonality factors between initial and final states. All the calculations show that a simple angular correlation can be used to achieve good
qualitative as well as quantitative agreement with experimental results.
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1. Introduction

In recent years there has been an increasing number of exper-
iments that involve quantum states of two electrons in the
continuum of an ionic target. Besides the well-known double
photoionization of atoms, multiple differential cross-sections of
double ionization of electrons by charged projectiles have been
obtained [1].

From a theoretical point of view, perturbative models have
proven to be both accurate as well as reliable in the description
of many different collision environments involving the double
ionization of many-electron atoms, either by charged projectiles
or photons. Assuming this perturbative regime, the initial and
final states of the system can be modeled with a variety of wave
functions. The electron—nucleus interaction can be represented
in helium-like atoms by a Coulomb wave functions, while the
correlation between the electrons can be introduced in different
ways [2]. In the initial state, correlation has been included in
a wide range of approximations, starting from simple perturba-
tion models to Hylleraas functions of many parameters [3—6].
These functions usually provide a good qualitative agreement

* Corresponding author.
E-mail address: flavioc @cab.cnea.gov.ar (F.D. Colavecchia).

0368-2048/$ — see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.elspec.2007.03.010

with experiments in (e,2e), (e,3e) and (y,2e) processes. However,
many quantitative discrepancies remain, and, although some of
them have been pointed out before [7], many more need to be
thoroughly analyzed.

In this work we perform a comparative analysis of dif-
ferential cross-sections of (e,3e) and (7y,2e) processes on He
atoms. We make use of initial states with different e—e cor-
relations. In Section 2 we introduce the basic elements of
perturbative theories, and in Section 3 we present the results
of our calculations. We draw some conclusions in Section 4,
and envision possible solutions for the discrepancies obtained.
Atomic units are used through the paper, unless otherwise
noted.

2. Theory

Perturbative models for the computation of differential cross-
sections rely on the accurate description of initial and final wave
functions of the system. The transition matrix in these models
can be written as

Tif = (¥ |Vilvi). ey

The wave function ¥ is the exact solution for the three-body
continuum, while V; is the initial channel perturbation potential


mailto:flavioc@cab.cnea.gov.ar
dx.doi.org/10.1016/j.elspec.2007.03.010

74 ED. Colavecchia et al. / Journal of Electron Spectroscopy and Related Phenomena 161 (2007) 73-79

that is left aside when computing the approximate solution v;
of the Schrodinger equation.
The potential V; for (e,3e) processes can be written as

V4 1 1
Vi=—Z 4+ —+ —, @

ro ror o2
where we have assumed the Born approximation. rg is the coor-
dinate of the projectile, whose relative distance from the two
ejected electrons are ro| and rqp, respectively. As usual, Z is the
charge of the ionic core. Within the Born approximation, the
calculation of the five-fold differential cross-sections (FDCS) is
performed representing the projectile by plane waves, both in
the initial and final channel. Calculation of the transition matrix
involves a 9D integration. However, for high projectile energies
and small momentum transfers, it is possible to calculate ana-
lytically a 6D integral and hence, the numerical work is reduced
to a 3D integral evaluation [8].

There are different ways to write V; for the (y,2e) process
in the dipolar approximation, by using the well-known accel-
eration, velocity and length gauges [9]. The computation of
the triply differential cross-sections (TDCS) in this case is per-
formed by direct numerical integration in the coordinates space
with an adaptive Monte Carlo method.

2.1. Final states

The final state of the ionized electrons is modeled by a C3
wave function [10-12]:

Ycs(ry, r2) = NesC(—ap, ki, r)C(—az, kp, 1p)
x D(a12, K12, r12) 3)

where the electron—nucleus interactions are described by the
two-body Coulomb functions C(—«;, k;, r;) of Sommerfeld
parameter o; = Zu/k;, i = 1,2, and Nc3 is a normalization
factor. The electron—electron correlation is represented by a
Coulomb distortion factor D.

We make use of the First Born Approximation in the (e,3e)
calculation. Then, the interaction between the projectile and
each active charged particle (two electrons and the nucleus)
is considered a perturbation, and the projectile is described
by a plane wave function. The complete wave function in the
(e,3e) case is then lI/f_(eﬁe) = exp(ikorg) x Yc3(ry, ra). There
are different proposals to modify this C3 function, introducing
momentum-dependent or distance-dependent effective Som-
merfeld parameters[13]. However, in this work we focus our
attention on the different approximate solutions to the initial
state.

2.2. Initial states

We choose different initial wave functions for the bound elec-
trons with positions ry and r;. There is a variety of approximate
wave functions for the 1s*> of He. They range from the sim-
ple product of hydrogenic Is states to the very sophisticated,
Hylleraas-like functions of Chuluunbaatar et al. [6] (see, for

example, ref. [5] and references therein). Usually they can be
written as

Yi(ry, r2) = Nivunc(r1, r2)¥eorr(r1, 72, 712), 4)

where the uncorrelated wave function Yy, (1, 72) for the elec-
trons is represented by the usual product of hydrogenic states
Yune X exp(—Zry — Zrp) I The choice of correlation factors
Yeorr(r1, 12, r12) can be performed according to different criteria.
However, the complete function ¥;(ry, r») has to be an approxi-
mate, physically sound, solution of the ground state Hamiltonian
of the He atom:
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where D; = ((82)/(8ri2)) + ((2/r)(@/0r;)), i = 1,2 or 12 and
the total energy is E = E| + E; + E1>. The first three terms
of this equation can be viewed as three independent two-body
Coulomb problems. The mixed derivatives, as we can see from
the equation, introduce the correlation. We define angular corre-
lation as the factors of the wave function .o that only depend
on the rj» coordinate, and radial correlation as those ones that
depend only on r; or r;.

One of the first proposals for a correlated ground state of the
He atom is due to Pluvinage [14,15]. He proposed the separable
trial function:

@pP(r1, 12, r12) = NpWunc(ry, r2) e *12"12

xF|1— iilu, 2,2iK,r12 (6)
as the solution of the first three terms of Eq. (5) with the energy E
defined by E| = E» = —Z?/2 and E15 = «2,. In the definition
of ¢pyy the energies E1 and E, are negative, while the E1 is
positive.

The Pluvinage function satisfies the Kato cusp conditions
[16]. A wave function satisfying these conditions properly diag-
onalizes the three-body Coulomb Schrddinger equation, Eq. (5),
at the coalescence points where the Coulomb potential diverges.
The parameter «12 is chosen variationally to approximately
diagonalize the Coulomb interactions in the He Hamiltonian.
Pluvinage obtained 1, = 0.41 for He, but the method was used
more recently in other atomic systems [4,17].

At this point we should emphasize that the Pluvinage func-
tion (6) does not include radial correlation [18]: there is not
any explicit dependence on the coordinates 1 and rp in Yeorr.
Then, the Pluvinage function as well as the functions defined by
Ancarani et al. [19] only present angular correlation. We note

! In the few following equations, Np represents a normalization factor for
each function ¢, while L is an acronym to label each one of the different initial
states.
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