
Efficient modulo 2n+1 multiply and multiply-add units based on
modified Booth encoding

Constantinos Efstathiou a, N. Moshopoulos b,n, N. Axelos b,1, K. Pekmestzi b

a Department of Informatics, Technological Institute of Athens, 12210 Athens, Greece
b Department of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece

a r t i c l e i n f o

Article history:
Received 2 August 2012
Received in revised form
7 April 2013
Accepted 7 April 2013
Available online 22 April 2013

Keywords:
Modulo
Multipliers
Fused multiply-add units
Residue number system
RNS
Modified Booth multiplication

a b s t r a c t

In this work a new efficient modulo 2n+1 modified Booth multiplication algorithm for both operands in
the weighted representation is proposed. Furthermore, the same algorithm is extended to realize modulo
2n+1 multiply-add units. The derived partial products are reduced by an inverted end around carry-save
adder tree to two operands, which are finally added by a modulo 2n+1 adder. The performance and
efficiency of the proposed multipliers are evaluated and compared against the earlier modulo 2n+1
multipliers, based on a single gate level model. Comparisons based on experimental CMOS implementa-
tions for both the multiply and multiply-add units are also given. The proposed multipliers yield area and
power savings by an average of 15% and 10% respectively, while the corresponding area and power
savings of the proposed multiply-add units are 14% and 21% respectively.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Residue Number System (RNS) [1] reduces the delay of
carry propagation, thus offering significant speedup over the
conventional binary system. This characteristic is advantageous
when repetitive arithmetic operations on long operands have to be
performed. RNS has been adopted in the design of Digital Signal
Processors (DSP) [2]. The low power consumption of RNS com-
pared to conventional arithmetic circuits for the implementation
of Finite Impulse Response (FIR) filters is presented in [3]. Discrete
Cosine Transform (DCT) processors [4], communication compo-
nents [5], cryptography [6,7] and other DSP applications [8] utilize
efficiently the RNS. RNS can also be used in the design of
arithmetic circuits that are variation tolerant [9]. Therefore, RNS
may be an interesting candidate for building processing circuits in
deep submicron technologies.

The moduli set 〈2n−1; 2n; 2n þ 1〉 and its extensions have received
significant attention because they offer simple and efficient imple-
mentations [10].

In many RNS based systems modulo 2n+1 units become a
bottleneck, as they have to deal with (n+1) bit wide operands,

whereas the remaining units handle operands with length lower
or equal to n bits.

The diminished-1 representation of binary numbers was intro-
duced in [11] to speed up modulo 2n+1 arithmetic operation. Since
only n bits are required for the representation of the magnitude of
any number A∈ð0; 2n�, the diminished-1 representation can lead to
implementations with delay and area comparable to that of the
modulo 2n−1, 2n units. Efficient diminished-1 modulo 2n+1 arith-
metic units have been proposed in [12–21]. Among them, the
diminished-1 modulo 2n+1 multipliers in [16,18] use Modified
Booth (MB) encoding, while the multipliers proposed in [17] are
the most efficient with conventional (without MB encoding) tree
architectures. In [19], a modulo 2n+1 MB multiplier is proposed,
with one factor in the diminished-1 representation, and the second
in the weighted representation. Diminished-1 modulo 2n+1 fused
multiply-add units, are proposed in [20,21].

The need for area, time and power consuming translators from
the weighted to the diminished-1 representation and vice versa
makes the design of weighted modulo 2n+1 functional units a
preferable candidate for many applications. Weighted modulo
2n+1 multipliers have been proposed in [16,22–24]. The weighted
modulo 2n+1 multipliers, proposed in [16,23] use MB encoding,
while those in [22] have a conventional tree architecture. Among
the multipliers using MB encoding those in [23] are the most
efficient.

Efficient fused multiply-add units which perform the operation
A�B+D in one cycle are included in modern microprocessors and
digital signal processors [25]. Many DSP algorithms have been

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/vlsi

INTEGRATION, the VLSI journal

0167-9260/$ - see front matter & 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.vlsi.2013.04.001

n Corresponding author. Tel.: +30 210 4955 093.
E-mail addresses: nikos@microlab.ntua.gr,

nmoshop@gmail.com (N. Moshopoulos).
1 The author contributed to this work while at the Department of Electrical and

Computer Engineering, National Technical University of Athens (January—August
2011).

INTEGRATION, the VLSI journal 47 (2014) 140–147

www.elsevier.com/locate/vlsi
www.elsevier.com/locate/vlsi
http://dx.doi.org/10.1016/j.vlsi.2013.04.001
http://dx.doi.org/10.1016/j.vlsi.2013.04.001
http://dx.doi.org/10.1016/j.vlsi.2013.04.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2013.04.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2013.04.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2013.04.001&domain=pdf
mailto:nikos@microlab.ntua.gr
mailto:nmoshop@gmail.com
http://dx.doi.org/10.1016/j.vlsi.2013.04.001


rewritten to take advantage of the presence of these units.
Weighted modulo 2n+1 fused multiply-add units, based on con-
ventional tree architecture are proposed in [24]. Fused multiply-
add units are also known in the literature as multiply-accumulate
(MAC) units.

In this work we propose a new modulo 2n+1 modified Booth
multiplication algorithm for both operands in the weighted
representation. Fused modulo 2n+1 multiply-add units based on
this algorithm are also described. The proposed multipliers have
similar architecture with those in [23], however the new multi-
pliers are based on a different algorithm that yield area and power
savings. Additionally the proposed design is extended to include
the efficient implementation of the fused multiply-add operation.
The proposed multipliers and multiply-add units compared
respectively against the multipliers and the multiply-add units
based on conventional architectures [22,24] require less area and
consume less power, while operating at the same speed.

The rest of the paper is organized as follows: in Section 2, the
design of the modulo 2n+1 multipliers and multiply-add units is
presented. Section 3 includes implementation details. In Section 4,
we estimate the complexity of the proposed multipliers and
multiply-add units and compare them against earlier published
designs. In Section 5 our conclusions are drawn.

2. Proposed designs

2.1. Design of modulo 2n+1 multipliers

Let A¼ anan−1⋯a1a0, B¼ bnbn−1⋯b1b0 be the weighted repre-
sentations of two numbers in the range ½0; 2n þ 1Þ, and Q ¼ jA�
Bj2nþ1 their product modulo 2n+1. In the following text the
notation Xa:b represent bits xaxa−1⋯xb of an operand X, (a4b).
For the product Q of A, B we have that

Q ¼ jðAþ 1Þ � B−Bj2nþ1 ¼ jðan2n þ An−1:0 þ 1Þ � B−Bj2nþ1 ð1Þ
Since j2nj2nþ1 ¼ j−1j2nþ1, the following relation holds:

Q ¼ jðAn−1:0 þ 1Þ � jBj2nþ1−anB−Bj2nþ1 ð2Þ
According to [19], operand jBj2nþ1 is modified Booth encoded

as,

jBj2nþ1 ¼ bMB
⌈n=2⌉−1b

MB
⌈n=2⌉−2⋯bMB

1 bMB
0 ¼

��� ∑
⌈n=2⌉−1

i ¼ 0
bMB
i ⋅22i

���
2nþ1

where bMB
i ∈ −2;−1;0;þ1;þ2f g ð3aÞ

The digits bMB
i are formed as follows:

When n is odd;

bMB
i ¼ −2b2iþ1 þ b2i þ b2i−1 for 1≤ i≤⌈n=2⌉−1 and

bMB
0 ¼ b0∨bn−2ðb1∨bnÞ ð3bÞ

while for n even,

bMB
i ¼ −2b2iþ1 þ b2i þ b2i−1 for 2≤ i≤⌈n=2⌉−1;

bMB
1 ¼ −2b3 þ b2 þ b1⋅bn∨bn−1 and

bMB
0 ¼ −2ðbn∨bn−1Þ⊕b1 þ b0 þ bn∨bn−1 ð3cÞ

Then for the product Q we get that

Q ¼
��� ∑
⌈n=2⌉−1

i ¼ 0

���ðAn−1:0 þ 1ÞbMB
i ⋅22ij2nþ1−anB−Bj2nþ1 ð4Þ

The computation of the terms jðAn−1:0 þ 1ÞbMB
i 22ij2nþ1 has been

presented in [23] and is depicted in Table 1 as the PPi terms, each
one requiring a constant correction equal to 1, except those with a
zero value requiring a correction of 22i+1. The above is clearly

illustrated by the next relation

jðAn−1:0 þ 1ÞbMB
i 22ij2nþ1 ¼ PPi þ 1þ z2i2

2i ð5Þ
where each term z2i is equal to 1 when its corresponding MB digit
bMB
i is equal to zero. Therefore, the product Q is computed as

follows:

Q ¼
��� ∑
⌈n=2⌉−1

i ¼ 0
PPi þ ⌈n=2⌉þ Zn−anB−B

���
2nþ1

ð6Þ

where Zn ¼∑⌈n=2⌉−1
i ¼ 0 z2i2

2i. Obviously operand Zn is of the form
zn−10⋯0z20z0 for n odd and of the form 0zn−20⋯0z20z0 for n
even. Terms z2i are derived through a NOR gate by slightly
modifying the original Booth Encoding block as is shown in Fig. 3.

From relation (6) we get that

Q ¼
��� ∑
⌈n=2⌉−1

i ¼ 0
PPi þ ⌈n=2⌉þ Zn−anðbn2n þ Bn−1:0Þ−bn2n−Bn−1:0

���
2nþ1

or

Q ¼
��� ∑
⌈n=2⌉−1

i ¼ 0
PPi þ ⌈n=2⌉þ Zn þ bn þ anbn−ðanBn−1:0 þ Bn−1:0Þ

���
2nþ1

ð7Þ
Let BI ¼ jan⋅bn−ðanBn−1:0 þ Bn−1:0Þj2nþ1. For an¼0 we have

BI ¼ j−Bn−1:0j2nþ1 ¼ j−ðbn−12n−1 þ bn−22
n−2 þ⋯þ b12þ b0Þj2nþ1

ð8Þ
while for an¼1

BI ¼ jbn−2Bn−1:0j2nþ1 ¼ jbn−ðbn−12n þ bn−22
n−1 þ⋯þ b02Þj2nþ1

¼ jbn þ bn−1−ðbn−22n−1 þ…þ b02Þj2nþ1 or

BI ¼ jbn∨bn−1−ðbn−22n−1 þ⋯þ b02þ 0Þj2nþ1 ð9Þ
Relations (8) and (9) are unified to the following:

BI ¼ janðbn∨bn−1Þ
− ðanbn−1∨anbn−2Þ2n−1 þ⋯þ ðanb1∨anb0Þ2þ anb0
n o

j2nþ1

or BI ¼ janðbn∨bn−1Þ−BLj2nþ1; where operand
BL ¼ ðanbn−1∨anbn−2Þðanbn−2∨anbn−3Þ⋯ðanb1∨anb0Þanb0 ð10Þ

That is,

Q ¼
��� ∑
⌈n=2⌉−1

i ¼ 0
PPi þ Zn þ ⌈n=2⌉þ bn þ anðbn∨bn−1Þ−BL

���
2nþ1

Since for the n-bit operand BL it holds that j−BLj2nþ1 ¼
jBL þ 2j2nþ1 we get

Q ¼
��� ∑
⌈n=2⌉−1

i ¼ 0
PPi þ Zn þ ⌈n=2⌉þ bn þ anðbn∨bn−1Þ þ BL þ 2

���
2nþ1

ð11Þ

For the case bn¼1, B¼ 100⋯00 and bMB
1 ¼ 0, then according to

Table 1 the partial product PP1 ¼ 11⋯100. Consequently, the
addition of the term bn can be realized by ORing it with pp1,0

Table 1
Formation of the partial products.

bMB
i Meaning PPi cori

0 0 11⋯1|fflfflffl{zfflfflffl}
n−2i

00⋯0|fflfflffl{zfflfflffl}
2i

1+22i

+1 jðAn−1:0 þ 1Þ22ij2nþ1 an−1−2ian−2−2i⋯a0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n−2i

an−1⋯anþ1−2ian−2i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2i

+1

−1 j−ðAn−1:0 þ 1Þ22ij2nþ1 an−1−2ian−2−2i ::a0|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n−2i

an−1 ::anþ1−2ian−2i|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2i

+1

+2 jðAn−1:0 þ 1Þ22iþ1j2nþ1 an−2−2i⋯a1a0|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n−2i−1

an−1⋯an−2ian−1−2i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2iþ1

+1

−2 j−ðAn−1:0 þ 1Þ22iþ1j2nþ1 an−2−2i⋯a1a0|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n−2i−1

an−1⋯an−2ian−2i−1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2iþ1

+1

C. Efstathiou et al. / INTEGRATION, the VLSI journal 47 (2014) 140–147 141



Download English Version:

https://daneshyari.com/en/article/539699

Download Persian Version:

https://daneshyari.com/article/539699

Daneshyari.com

https://daneshyari.com/en/article/539699
https://daneshyari.com/article/539699
https://daneshyari.com

