

Contents lists available at ScienceDirect

## Journal of Luminescence



journal homepage: www.elsevier.com/locate/jlumin

# Effect of single and composite fluxes on the morphology and luminescence properties of layered perovskite Sr<sub>1.95</sub>TiO<sub>4</sub>:0.05Sm<sup>3+</sup> phosphor



Xiulan Wu, Yehui Jiao\*, Ou Hai, Qiang Ren, Fei Lin, Huanhuan Li

School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China

## ARTICLE INFO

Keywords: Sr<sub>1.95</sub>TiO<sub>4</sub>:0.05Sm<sup>3+</sup> Phosphor Flux Layered perovskite

# ABSTRACT

 $Sr_{1.95}TiO_4$ :0.05Sm<sup>3+</sup> phosphors with various fluxes were synthesized. The influence of these fluxes on the crystallization behavior, morphology, and luminescence properties of  $Sr_{1.95}TiO_4:0.05Sm^{3+}$  phosphor was systematically investigated. The results showed that the luminescence properties and morphology of the phosphor were improved by adding fluxes. The emission intensity of the phosphor was enhanced about 39-94% with the addition of single fluxes, while, it was enhanced about 200% when  $H_3BO_3 + NH_4HF_2$  was used as composite flux. The synthesis temperature of the Sr<sub>1.95</sub>TiO<sub>4</sub>:0.05Sm<sup>3+</sup> phosphor was decreased but the emission intensity was increased when H<sub>3</sub>BO<sub>3</sub> + NH<sub>4</sub>HF<sub>2</sub> was used as composite flux. The luminescence spectrum mainly showed three intense emission bands at 568, 603 and 649 nm. Its luminescence lifetime was 716.77 µs. All these indicated that the addition of  $H_3BO_3 + NH_4HF_2$  was greatly useful to lower the sintering temperature, improve the crystallization and morphology, and enhance the luminescence properties of layered perovskite Sr<sub>1.95</sub>TiO<sub>4</sub>:0.05Sm<sup>3+</sup> phosphor.

#### 1. Introduction

In recent years, the rare earth doped luminescence materials are intensively investigated and play an important role in the field of semiconductor lighting [1–4]. As the fourth generation of illumination technology, the white light-emitting diodes (WLEDs) have many advantages, such as low power consumption, high light efficiency, long serving time and environmental friendliness, and it is proved that the rare earth doped phosphors conversion is the most common approach for obtaining white lights emission at present [4–7]. The currently commercial WLEDs are obtained by GaN-based LED chip which emitting blue light (~465 nm) and yellow phosphor  $(Y_3Al_5O_{12}:Ce^{3+})$  [8]. However, such kind of white light has the poor color rendering index (CRI < 80), and high correlated color temperature (CCT  $\approx$  7750 K) due to the lack of red-emitting component, which restricts its further application [9,10]. In order to solve these problems, exploring a desirable red phosphor to compensate the red-emitting component is found to be an effective way to enhance the performance of WLEDs.

Titanate compounds have been considered as promising and alternative host materials of phosphors due to its properties of low cost, easy preparation, and excellent physical and chemical stabilities [11,12]. As one kind of titanate phosphor, Sr<sub>2</sub>TiO<sub>4</sub> has two dimensionals layered perovskite-like crystal structure [13]. This layered perovskite compound has longer distance between layers, which induce it has bigger doping concentration [14]. Therefore,  $Sr_2TiO_4$  is an attractive candidate for the host material of phosphors. Nevertheless, it is very difficult to obtain Sr<sub>2</sub>TiO<sub>4</sub> host material with high purity due to the high temperature and long sintering time is needed during the sintering process. Hence, it is of great significance to lower the sintering temperature of Sr<sub>2</sub>TiO<sub>4</sub>. As is well known to all, the ceramics can be sintered at lower temperature mainly using liquid phase sintering mechanism. The liquid phase would appear in a low temperature with addition of fluxes. There are many fluxes that used in the preparation of phosphors have been reported, such as Li<sub>2</sub>CO<sub>3</sub>, NH<sub>4</sub>Cl, NaF, H<sub>3</sub>BO<sub>3</sub> and so on, which have a significant effect on lowering the sintering temperature, controlling the morphology of phosphors, improving the crystallization and luminescence intensity of the phosphors [15–17].

The action of fluxes on phosphor particles can be seen as a liquid phase sintering mechanism which includes three steps: (1) generation of a liquid phase; (2) dissolution of some raw materials of  $Sr_2TiO_4$  in the liquid phase and precipitation of  $Sr_2TiO_4$ ; (3) Ostwald ripening [16]. Table 1 shows a few basic properties of five kinds of fluxes. The melting points of H<sub>3</sub>BO<sub>3</sub> and NH<sub>4</sub>HF<sub>2</sub> are relatively lower. H<sub>3</sub>BO<sub>3</sub> can be decomposed into B<sub>2</sub>O<sub>3</sub> that has the characters of low melting point, low viscosity and difficult to volatile in low temperature (below 800 °C), which indicates that the liquid phase could exist for a relatively long time [18-20]. Likewise, NH<sub>4</sub>HF<sub>2</sub> has similar characters with H<sub>3</sub>BO<sub>3</sub>, it can be decomposed as NH4F and HF. The liquid phase NH4F can

http://dx.doi.org/10.1016/j.jlumin.2017.07.054

0022-2313/ © 2017 Published by Elsevier B.V.

<sup>\*</sup> Corresponding author. E-mail address: 13700275836@163.com (Y. Jiao).

Received 18 February 2017; Received in revised form 5 July 2017; Accepted 27 July 2017 Available online 28 July 2017

## Table 1

The basic properties of five kinds of fluxes.

| Basic<br>properties   | AlF <sub>3</sub> ·3H <sub>2</sub> O | $\rm NH_4HF_2$ | H <sub>3</sub> BO <sub>3</sub> | B <sub>2</sub> O <sub>3</sub> | NaCl    | Na <sub>2</sub> CO <sub>3</sub> |
|-----------------------|-------------------------------------|----------------|--------------------------------|-------------------------------|---------|---------------------------------|
| Melting point<br>(°C) | 1040                                | 125            | 185                            | 445                           | 801     | 851                             |
| Boiling point<br>(°C) | 1537                                | 230            | 300                            | 1860                          | 1465    | 1600                            |
| Solubility in water   | Insoluble                           | Soluble        | Soluble                        | Slightly<br>soluble           | Soluble | Soluble                         |

degrade the decomposition temperature of carbonates and accelerate the phase formation as the flux [21]. What's more, Ostwald ripening is an essential factor for the formation of morphology of the samples. During the solid-state reaction, there are many particles with different sizes formed. Meanwhile, the liquid phase can be produced by flux. Because of a higher solubility and energy of smaller particles than that of the larger ones, the smaller particles would gradually dissolve into the liquid phase, and redeposit on the surface of the larger particles. Therefore, the smaller particles shrink, while the larger ones grow, this process would result in the smaller particles gradually become uniform near-spherical particles [22,23].

In this paper, we used five different flux materials (H<sub>3</sub>BO<sub>3</sub>, AlF<sub>3</sub>:3H<sub>2</sub>O, NH<sub>4</sub>HF<sub>2</sub>, NaCl and Na<sub>2</sub>CO<sub>3</sub>) as single flux and H<sub>3</sub>BO<sub>3</sub> with four other fluxes as composite flux respectively to synthesize the Sr<sub>1.95</sub>TiO<sub>4</sub>:0.05Sm<sup>3+</sup> phosphor. Effects of fluxes on crystal formation, morphology and luminescence properties of Sr<sub>1.95</sub>TiO<sub>4</sub>:0.05Sm<sup>3+</sup> phosphors were researched. Finally, the luminescence lifetimes of Sr<sub>1.95</sub>TiO<sub>4</sub>:0.05Sm<sup>3+</sup> phosphors prepared with 1 mol% (it's the amount of Sr<sub>2</sub>TiO<sub>4</sub> molar) H<sub>3</sub>BO<sub>3</sub>+NH<sub>4</sub>HF<sub>2</sub> as flux were systematically investigated.

#### 2. Experimental sections

#### 2.1. Solid state synthesis of phosphor powders

 $\rm Sr_{1.95} TiO_4:0.05 \rm Sm^{3+}$  samples with different kinds of fluxes were prepared by high-temperature solid-state method. SrCO<sub>3</sub> (99.0%) and TiO<sub>2</sub> (99.0%) and Sm<sub>2</sub>O<sub>3</sub> (99.99%) were served as the raw materials. H<sub>3</sub>BO<sub>3</sub> (99.5%), AlF<sub>3</sub>:3H<sub>2</sub>O (98.0%), NH<sub>4</sub>HF<sub>2</sub> (98.0%), NaCl (99.5%) and Na<sub>2</sub>CO<sub>3</sub> (99.8%) were used as single flux, and H<sub>3</sub>BO<sub>3</sub> couple with one of others as composite flux. At first, weighted raw materials and fluxes according to the stoichiometric ratio. Then, the starting materials were sufficiently grinded and mixed in an agate mortar. After that, placed it in a corundum crucible and annealed at 1200 °C – 1400 °C in air for 6 h. The calcinations were controlled at a heating rate of 5 °C/ min until reach the target temperature. The phosphors Sr<sub>2-x</sub>TiO<sub>4</sub>:xSm were synthesized via the reaction as follows:

$$(2-x)SrCO_3 + TiO_2 + \frac{x}{2}Sm_2O_3 \rightarrow Sr_{2-x}TiO_4: xSm + CO_2$$
(1)

Finally, the phosphors were obtained in the form of powders.

#### 2.2. Characterization

The phase composition and crystal structure of the Sr<sub>1.95</sub>TiO<sub>4</sub>:0.05Sm<sup>3+</sup> phosphors were characterized by X-ray diffraction (XRD-D/max2200pc, Japan) technique with Cu k<sub>α</sub> radiation ( $\lambda = 0.154$  nm) of wavelength. The morphologies and particle size of the phosphors were observed by field-emission scanning electron microscope FE-SEM (Hitachi S-4800). The photoluminescence intensity of the Sr<sub>1.95</sub>TiO<sub>4</sub>:0.05Sm<sup>3+</sup> phosphors were researched by Hitachi F-4600 fluorescence spectrophotometer equipped with a 150 W Xe lamp as the excitation light source. The photoluminescence decay curves were measured by Edinburgh Instruments FS5 spectrofluorimeter equipped



Fig. 1. X-ray diffraction (XRD) patterns of the  $Sr_{1.95}$ TiO<sub>4</sub>:0.05Sm<sup>3+</sup> phosphors annealed at different temperature for 6 h in air and JCPDS NO. 39-1471.

with a 150 W Xe lamp as an excitation source. All of the measurements were performed at room temperature.

#### 3. Results and discussion

#### 3.1. Phase identification

The XRD patterns of the Sr<sub>1.95</sub>TiO<sub>4</sub>:0.05Sm<sup>3+</sup> phosphors annealed at different temperatures in air for 6 h are shown in Fig. 1. It shows that when the calcination temperature is above 1300 °C, the phosphor exhibits the pure Sr<sub>2</sub>TiO<sub>4</sub> crystal phase. However, when the firing temperature reduced to 1200 °C, the Ti<sub>8</sub>O<sub>15</sub> phase appears. The lower sintering temperature increase the possibilities of the generation of impurity. At the same time, the melting point of raw materials should be considered into the high-temperature solid-state reaction. As one of the raw materials, TiO<sub>2</sub> has a relatively high melting temperature (1850 °C), it is difficult to gain highly purified Sr<sub>2</sub>TiO<sub>4</sub> crystal phase when the sintering temperature is reduced. With the increase of the sintering temperature, the chemical activity and the diffusion coefficient of solids increased, which lead to the solid-state reaction become more active, so the raw material TiO<sub>2</sub> can more effectively participate in the solid-state reaction. Therefore, the impurity phase Ti<sub>8</sub>O<sub>15</sub> disappears when the sintering temperature reach 1300 °C. However, it is of great value to prepare Sr<sub>2</sub>TiO<sub>4</sub> host material with high purity but lower sintering temperature. It was reported that adding the flux can achieve this objective.

The XRD patterns of Sr<sub>1.95</sub>TiO<sub>4</sub>:0.05Sm<sup>3+</sup> phosphors prepared at 1200 °C with different fluxes are shown in Fig. 2(a). All of the peaks match well with the JCPDS No. 39-1471 when two different compounds are used as flux. However, the impurity peaks of Sr<sub>2</sub>Ti<sub>6</sub>O<sub>13</sub> are clearly observed in Fig. 2(a) when NaCl and Na<sub>2</sub>CO<sub>3</sub> are used as single flux respectively. The addition of H<sub>3</sub>BO<sub>3</sub> as composite flux has a great significance in improving the crystal purity of Sr<sub>2</sub>TiO<sub>4</sub>. Obviously, the impurity peaks disappear when H<sub>2</sub>BO<sub>2</sub> + NaCl and H<sub>2</sub>BO<sub>2</sub> + Na<sub>2</sub>CO<sub>3</sub> are used as composite flux. Therefore, the composite flux is more beneficial to the formation of Sr<sub>2</sub>TiO<sub>4</sub> crystalline phase. It is worth noting that the high purified Sr<sub>2</sub>TiO<sub>4</sub> crystalline phase can be obtained at lower sintering temperature (1200 °C) when the composite flux is used. From another point of view, the accommodation of Sm<sup>3+</sup> in the Sr<sub>2</sub>TiO<sub>4</sub> host requires charge compensation and that the addition of a flux (such as NaCl or Na<sub>2</sub>CO<sub>3</sub>) can significantly influence this process and then the emission performance. By comparing the XRD patterns of the samples prepared without flux and with NaCl or Na<sub>2</sub>CO<sub>3</sub> as flux at 1200 °C, we find that the number of impurity peaks obviously decreased with the addition of NaCl and Na2CO3, which indicates their emission performance would be improved. But, since the molar amount of NaCl or

Download English Version:

# https://daneshyari.com/en/article/5397447

Download Persian Version:

https://daneshyari.com/article/5397447

Daneshyari.com