ELSEVIER

Journal of Luminescence

Recent trends in binary and ternary rare-earth fluoride nanophosphors: How structural and physical properties influence optical behavior

Rahul Kumar Sharma^a, Anja-Verena Mudring^{b,c,*,1}, Pushpal Ghosh^{a,**,1}

^a School of Chemical Science and Technology, Department of Chemistry, Dr. H.S. Gour University (A Central University), Sagar 470003, Madhya Pradesh, India

^b Department of Materials Science and Engineering, Iowa State University, Ames, IA 50014, USA

^c The Critical Materials Institute, Ames Laboratory, Ames, IA 50011, USA

ARTICLE INFO

Article history: Received 19 May 2016 Received in revised form 1 February 2017 Accepted 15 March 2017 Available online 28 March 2017

Keywords: Rare-earths Rare-earth fluoride Luminescence Nanomaterials Photonics

ABSTRACT

Rare-earth (RE) doped binary and ternary fluoride nanomaterials are currently receiving the highest attention as phosphor materials due to their potential for a wide range of photonic and biophotonic applications. This review article aims providing and introduction to the field and giving a critical overview about the latest developments in this fast evolving field. First, the underlying photoluminescence mechanisms like up- and downconversion (UC and DC), charge transfer (CT) and energy transfer (ET) between optically active trivalent RE ions are explained. Then, the influence of particle size and surface, shape and lattice strain, as well as the crystal phase of the host materials on the optical properties of rare earth based nanomaterials are illustrated. In addition, the effect of surface plasmon resonance (SPR) on the rare earth luminescence is discussed. In the following, different synthesis strategies which have been developed for tuning the crystal phase, size, and morphology of the host nanomaterial are presented. The role of surface modification and functionalization for improving the luminescence intensity, stability, aqueous dispersity/dispersibility and biocompatibility of the materials is discussed. Finally, photonic applications like photodynamic therapy, and biological detection techniques including *in vivo* and *in vitro* bioimaging are presented.

© 2017 Published by Elsevier B.V.

Contents

1.	Introd	luction	. 45	
2.	Photo	Photophysics of trivalent rare earth materials		
	2.1.	Direct excitation, energy transfer and charge transfer transition	46	
	2.2.	Quantum-cutting downconversion	48	
	2.3.	Upconversion	48	
3.	3. Host materials for luminescent RE ³⁺			
4.	Synth	esis of binary and ternary RE-fluoride nanoparticles	. 49	
	4.1.	Thermal decomposition	49	
	4.2.	Hydro/solvothermal method	49	
	4.3.	Co-precipitation method	50	
	4.4.	Microemulsion method	50	
	4.5.	Microwave assisted synthesis	50	
	4.6.	Sonochemical method	50	
	4.7.	Ionic liquid assisted synthesis	51	
	4.8.	Other methods.	51	
5.	Nanor	particle surface modification including functionalization	. 51	

* Corresponding author at: Department of Materials Science and Engineering, Iowa State University, Ames, IA 50014, USA.

** Corresponding author.

E-mail address: anja.mudring@rub.de (A.-V. Mudring).

¹ Inorganic Chemistry III – Materials Synthesis and Characterization, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801 Bochum, Germany.

http://dx.doi.org/10.1016/j.jlumin.2017.03.062 0022-2313/© 2017 Published by Elsevier B.V.

5.2. Surface functionalization 51 5.2.1. Amphiphilic polymer based surface derivatization 51 5.2.2. Silica-coated surface protection 52 5.2.3. Layer-by-layer assembly 52 5.2.4. Others. 52 6. Crystal phase shape and lattice strain 52 6.1. Effect of temperature. 52 6.1.1. Effect of reactants and synthesis methods 53 6.1.3. Effect of reactants and synthesis methods 53 6.1.5. Effect of the ionic liquid 54 6.1.6. Effect of solvent composition 54 6.1.7. Effect of doping 54 7.1. Effect of core-tell structure on luminescence 55 7.3. Effect of core-tell structure on luminescence 55 7.3. Effect of choices of dopant inos on luminescence		5.1.	1. Surface passivation				
5.2.1. Amphiphilic polymer based surface derivatization 51 5.2.2. Silica-coated surface protection 52 5.2.3. Layer-by-layer assembly 52 5.2.4. Others. 52 6. Crystal phase, shape and lattice strain 52 6.1. Tuning of crystal phase and shape 52 6.1.1. Effect of temperature. 52 6.1.2. Effect of chalting agent/ligand. 53 6.1.3. Effect of chalting agent/ligand. 53 6.1.4. Effect of chalting agent/ligand. 53 6.1.5. Effect of of solvent composition 54 6.1.7. Effect of doping. 54 6.1.8. Effect of oscience. 54 6.1.7. Effect of doping. 54 6.2. Tuning of luminescence. 54 7.1. Effect of crystal phase on luminescence. 54 7.2. Effect of concerb listructure on luminescence. 55 7.3. Effect of concerb and other factors 57 7.4. Effect of concerb and charl and other factors 57 7.5. Tuning of upconversion mexi		5.2.	functionalization	51			
5.2.2. Silica-coated surface protection			5.2.1.	Amphiphilic polymer based surface derivatization	51		
5.2.3. Layer-by-layer assembly			5.2.2.	Silica-coated surface protection	52		
5.2.4.Others.526.Crystal phase, shape and lattice strain.526.1.Tuning of crystal phase and shape526.1.Effect of ionic radii.526.1.2.Effect of ionic radii.526.1.3.Effect of reactants and synthesis methods536.1.4.Effect of the ionic liquid536.1.5.Effect of the ionic liquid546.1.6.Effect of objoing546.1.7.Effect of doping546.1.8.Effect of doping546.1.7.Effect of operties.546.1.7.Effect of operties.546.2.Tuning of luminescence properties.547.1.Effect of crystal phase on luminescence.547.2.Effect of core-shell structure on luminescence.557.3.Effect of morphology on luminescence.567.4.Effect of forophology on luminescence.567.5.Temperature dependent measurements and other factors577.6.Tuning of upconversion emission via surface plasmon resonance (SPR)577.7.How to increase and calculate upconversion quantum yield2.578.1.Effection therials and store energy efficient lighting and plasma display applications588.2.1.Photonic applications598.2.2.FRET based and other biological detection598.2.3.In vio and in viro imaging.509.Conclusions and perspectives.509.Conclusions and perspec			5.2.3.	Layer-by-layer assembly	52		
6. Crystal phase, shape and lattice strain 52 6.1. Tuning of crystal phase and shape 52 6.1.1. Effect of temperature. 52 6.1.2. Effect of ionic radii. 52 6.1.3. Effect of reactants and synthesis methods 53 6.1.4. Effect of chelating agent/ligand 53 6.1.5. Effect of solvent composition 54 6.1.6. Effect of solvent composition 54 6.1.7. Effect of doping 54 6.2. Tuning of lutice strain of fluoride host materials 54 7. Tuning of lutices creation of muninescence. 54 7.1. Effect of core-shell structure on luminescence 54 7.2. Effect of choices of dopant ions on luminescence. 54 7.3. Effect of choices of dopant ions on luminescence. 56 7.4. Effect of choices of dopant ions on luminescence. 56 7.5. Tuning of upconversion emission via surface plasmon resonance (SPR) 57 7.7. How to increase and calculate upconversion quantum yield? 57 8.1. Photonic applications 57 8.1. Photonic applications 57 8.1. Photonic applications 59 8.2.1. Photony phosphors for energy efficient lighting and plasma display applications 58			5.2.4.	Others	52		
6.1. Tuning of crystal phase and shape 52 6.1.1. Effect of temperature 52 6.1.2. Effect of ionic radii. 52 6.1.3. Effect of reactants and synthesis methods 53 6.1.4. Effect of chelating agent/ligand. 53 6.1.5. Effect of the ionic liquid 54 6.1.6. Effect of doping 54 6.1.7. Effect of doping 54 6.1.7. Effect of doping 54 6.1.7. Effect of of crystal phase on luminescence. 54 7.1. Effect of crystal phase on luminescence. 54 7.1. Effect of core-shell structure on luminescence. 55 7.3. Effect of choices of dopant ions on luminescence. 56 7.4. Effect of choices of dopant ions on luminescence. 56 7.5. Temperature dependent measurements and other factors 57 7.6. Tuning of upconversion emission via surface plasmon resonance (SPR) 57 7.7. How to increase and calculate upconversion quantum yield? 57 8.1. Photonic applications 57 8.1. Effect of dyno	6.	Crysta	l phase, sl	hape and lattice strain	52		
6.1.1 Effect of temperature.		6.1.	of crystal phase and shape	52			
6.1.2. Effect of ionic radii.			6.1.1.	Effect of temperature	52		
6.1.3. Effect of reactants and synthesis methods 53 6.1.4. Effect of reactants and synthesis methods 53 6.1.5. Effect of the ionic liquid 54 6.1.6. Effect of doping 54 6.1.7. Effect of doping 54 6.1.8. Effect of doping 54 6.2. Tuning of luminescence properties 54 7.1. Effect of core-shell structure on luminescence 54 7.1. Effect of core-shell structure on luminescence 54 7.2. Effect of core-shell structure on luminescence 55 7.3. Effect of choices of dopant ions on luminescence 56 7.4. Effect of choices of dopant ions on luminescence 56 7.5. Tuning of lupconversion emission via surface plasmon resonance (SPR) 57 7.7. How to increase and calculate upconversion quantum yield? 57 8.1.1. Efficient white light emitting materials 57 8.1.2. Quantum-cutting phosphors for energy efficient lighting and plasma display applications 58 8.1.3. Upconversion materials and solar cells. 59 8.2.1. Photodynamic therapy			6.1.2.	Effect of ionic radii	52		
6.1.4. Effect of chelating agent/ligand. 53 6.1.5. Effect of the ionic liquid 54 6.1.6. Effect of solvent composition 54 6.1.7. Effect of doping 54 6.2. Tuning of luttice strain of fluoride host materials 54 7. Effect of corresche properties. 54 7.1. Effect of corre-shell structure on luminescence. 54 7.2. Effect of corre-shell structure on luminescence 56 7.3. Effect of choices of dopant ions on luminescence 56 7.4. Effect of choices of dopant ions on luminescence 56 7.5. Temperature dependent measurements and other factors 57 7.6. Tuning of upconversion emission via surface plasmon resonance (SPR) 57 7.7. How to increase and calculate upconversion quantum yield? 57 8.1. Photonic applications 57 8.1.1. Effections 59 8.1.2. Quantum-cutting phosphors for energy efficient lighting and plasma display applications 58 8.2.1. Photodynamic therapy. 59 8.2.2. FRET based and other biological detection.			6.1.3.	Effect of reactants and synthesis methods	53		
6.1.5. Effect of the ionic liquid . 54 6.1.6. Effect of solvent composition 54 6.1.7. Effect of doping . 54 6.2. Tuning of lattice strain of fluoride host materials 54 7. Tuning of luminescence properties. 54 7.1. Effect of core-shell structure on luminescence. 54 7.2. Effect of core-shell structure on luminescence. 55 7.3. Effect of core-shell structure on luminescence. 56 7.4. Effect of choices of dopant ions on luminescence. 56 7.5. Temperature dependent measurements and other factors 57 7.6. Tuning of upconversion emission via surface plasmon resonance (SPR) 57 7.7. How to increase and calculate upconversion quantum yield? 57 8.11. Efficient white light emitting materials 57 8.12. Quantum-cutting phosphors for energy efficient lighting and plasma display applications 59 8.2. Biophotonic applications 59 8.2.1. Photodynamic therapy. 59 8.2.1. Photodynamic therapy. 59 8.2.2. FRET based and other bi			6.1.4.	Effect of chelating agent/ligand	53		
6.1.6. Effect of solvent composition 54 6.1.7. Effect of doping 54 6.2. Tuning of lattice strain of fluoride host materials 54 7. Tuning of luminescence properties. 54 7.1. Effect of crystal phase on luminescence. 54 7.2. Effect of core-shell structure on luminescence. 55 7.3. Effect of choices of dopant ions on luminescence. 56 7.4. Effect of choices of dopant ions on luminescence. 56 7.5. Temperature dependent measurements and other factors 57 7.6. Tuning of upconversion emission via surface plasmon resonance (SPR) 57 7.7. How to increase and calculate upconversion quantum yield? 57 8.1. Photonic applications 57 8.1. Photonic applications 57 8.1.3. Upconversion materials and solar cells. 59 8.2.1. Photophynamic therapy. 59 8.2.2. FRET based and other biological detection. 59 8.2.3. In vivo and in vitro imaging. 60 9. Conclusions and perspectives. 61 <td< td=""><td></td><td></td><td>6.1.5.</td><td>Effect of the ionic liquid</td><td>54</td></td<>			6.1.5.	Effect of the ionic liquid	54		
6.1.7. Effect of doping			6.1.6.	Effect of solvent composition	54		
6.2. Tuning of lattice strain of fluoride host materials 54 7. Tuning of luminescence properties. 54 7.1. Effect of crystal phase on luminescence. 54 7.2. Effect of core-shell structure on luminescence 55 7.3. Effect of choices of dopant ions on luminescence. 56 7.4. Effect of choices of dopant ions on luminescence. 56 7.5. Temperature dependent measurements and other factors 57 7.6. Tuning of upconversion emission via surface plasmon resonance (SPR) 57 7.7. How to increase and calculate upconversion quantum yield? 57 8. Applications 57 8.1. Photonic applications 57 8.1.2. Quantum-cutting phosphors for energy efficient lighting and plasma display applications 58 8.1.3. Upconversion materials and solar cells 59 8.2.1. Photodynamic therapy. 59 8.2.2. In Protogen and other biological detection 59 8.2.3. In vivo and in vitro imaging 60 9. Conclusions and perspectives 61 Acknowledgements 62 References 62			6.1.7.	Effect of doping	54		
7. Tuning of luminescence properties. 54 7.1. Effect of crystal phase on luminescence. 54 7.2. Effect of core-shell structure on luminescence 55 7.3. Effect of choices of dopant ions on luminescence 56 7.4. Effect of choices of dopant ions on luminescence 56 7.5. Temperature dependent measurements and other factors 57 7.6. Tuning of upconversion emission via surface plasmon resonance (SPR) 57 7.7. How to increase and calculate upconversion quantum yiel? 57 8.1. Photonic applications 57 8.1.1. Efficient white light emitting materials 57 8.1.2. Quantum-cutting phosphors for energy efficient lighting and plasma display applications 58 8.2.1. Photodynamic therapy 59 8.2.2. FRET based and other biological detection 59 8.2.3. In vivo and in vitro imaging 60 9. Conclusions and perspectives 61 9. Conclusions and perspectives 61 9. References 62		6.2.	Tuning o	of lattice strain of fluoride host materials	54		
7.1. Effect of crystal phase on luminescence 54 7.2. Effect of core-shell structure on luminescence 55 7.3. Effect of morphology on luminescence 56 7.4. Effect of coloces of dopant ions on luminescence 56 7.5. Temperature dependent measurements and other factors 57 7.6. Tuning of upconversion emission via surface plasmon resonance (SPR) 57 7.7. How to increase and calculate upconversion quantum yield? 57 8. Applications 57 8.1. Efficient white light emitting materials 57 8.1.2. Quantum-cutting phosphors for energy efficient lighting and plasma display applications 58 8.1.3. Upconversion materials and solar cells. 59 8.2.1. Photodynamic therapy. 59 8.2.2. FRET based and other biological detection. 59 8.2.3. In vivo and in vitro imaging. 60 9. Conclusions and perspectives. 61 Acknowledgements. 62 References 62	7.	Tuning of luminescence properties					
7.2. Effect of core-shell structure on luminescence 55 7.3. Effect of morphology on luminescence 56 7.4. Effect of choices of dopant ions on luminescence 56 7.5. Temperature dependent measurements and other factors 57 7.6. Tuning of upconversion emission via surface plasmon resonance (SPR) 57 7.7. How to increase and calculate upconversion quantum yield? 57 8. Applications 57 8.1. Photonic applications 57 8.1.1. Efficient white light emitting materials 57 8.1.2. Quantum-cutting phosphors for energy efficient lighting and plasma display applications 58 8.1.3. Upconversion materials and solar cells. 59 8.2.1. Photodynamic therapy. 59 8.2.3. In vivo and in vitro imaging. 60 9. Conclusions and perspectives 61 Acknowledgements. 62 References 62		7.1.	Effect of	crystal phase on luminescence	54		
7.3. Effect of morphology on luminescence 56 7.4. Effect of choices of dopant ions on luminescence 56 7.5. Temperature dependent measurements and other factors 57 7.6. Tuning of upconversion emission via surface plasmon resonance (SPR) 57 7.7. How to increase and calculate upconversion quantum yield? 57 8. Applications 57 8.1. Photonic applications 57 8.1.1. Efficient white light emitting materials 57 8.1.2. Quantum-cutting phosphors for energy efficient lighting and plasma display applications 58 8.1.3. Upconversion materials and solar cells. 59 8.2.1. Photodynamic therapy. 59 8.2.2. FRET based and other biological detection. 59 8.2.3. In vivo and in vitro imaging. 60 9. Conclusions and perspectives 61 Acknowledgements. 62 References 62		7.2.	Effect of	core-shell structure on luminescence	55		
7.4. Effect of choices of dopant ions on luminescence 56 7.5. Temperature dependent measurements and other factors 57 7.6. Tuning of upconversion emission via surface plasmon resonance (SPR) 57 7.7. How to increase and calculate upconversion quantum yield? 57 8. Applications 57 8.1. Photonic applications 57 8.1.1. Efficient white light emitting materials 57 8.1.2. Quantum-cutting phosphors for energy efficient lighting and plasma display applications 58 8.1.3. Upconversion materials and solar cells 59 8.2. Biophotonic applications 59 8.2.1. Photodynamic therapy. 59 8.2.2. FRET based and other biological detection 59 8.2.3. In vivo and in vitro imaging. 60 9. Conclusions and perspectives 61 Acknowledgements. 62 References 62		7.3.	7.3. Effect of morphology on luminescence				
7.5. Temperature dependent measurements and other factors 57 7.6. Tuning of upconversion emission via surface plasmon resonance (SPR) 57 7.7. How to increase and calculate upconversion quantum yield? 57 8. Applications 57 8.1. Photonic applications 57 8.1. Efficient white light emitting materials 57 8.1.1. Efficient white light emitting materials 57 8.1.2. Quantum-cutting phosphors for energy efficient lighting and plasma display applications 58 8.1.3. Upconversion materials and solar cells 59 8.2. Biophotonic applications 59 8.2.1. Photodynamic therapy 59 8.2.2. FRET based and other biological detection 59 8.2.3. In vivo and in vitro imaging. 59 8.2.4. FRET based and other biological detection 59 8.2.3. In vivo and in vitro imaging. 60 9. Conclusions and perspectives 61 Acknowledgements 62 62 References 62		7.4.	Effect of choices of dopant ions on luminescence				
7.6. Tuning of upconversion emission via surface plasmon resonance (SPR) 57 7.7. How to increase and calculate upconversion quantum yield? 57 8. Applications 57 8.1. Photonic applications 57 8.1. Efficient white light emitting materials 57 8.1.1 Efficient white light emitting materials 57 8.1.2 Quantum-cutting phosphors for energy efficient lighting and plasma display applications 58 8.1.3 Upconversion materials and solar cells. 59 8.2. Biophotonic applications 59 8.2.1 Photodynamic therapy 59 8.2.2. FRET based and other biological detection 59 8.2.3 In vivo and in vitro imaging 60 9. Conclusions and perspectives 61 Acknowledgements 62 62		7.5.	Tempera	ture dependent measurements and other factors	57		
7.7. How to increase and calculate upconversion quantum yield? 57 8. Applications 57 8.1. Photonic applications 57 8.1. Efficient white light emitting materials 57 8.1.1. Efficient white light emitting materials 57 8.1.2. Quantum-cutting phosphors for energy efficient lighting and plasma display applications 58 8.1.3. Upconversion materials and solar cells. 59 8.2. Biophotonic applications 59 8.2.1. Photodynamic therapy. 59 8.2.2. FRET based and other biological detection. 59 8.2.3. In vivo and in vitro imaging. 60 9. Conclusions and perspectives 61 Acknowledgements 62 62		7.6.	Tuning o	f upconversion emission via surface plasmon resonance (SPR)	57		
8. Applications 57 8.1. Photonic applications 57 8.1.1. Efficient white light emitting materials 57 8.1.2. Quantum-cutting phosphors for energy efficient lighting and plasma display applications 58 8.1.3. Upconversion materials and solar cells. 59 8.2. Biophotonic applications 59 8.2.1. Photodynamic therapy. 59 8.2.2. FRET based and other biological detection. 59 8.2.3. In vivo and in vitro imaging. 60 9. Conclusions and perspectives 62 References 62		7.7.	How to i	increase and calculate upconversion quantum yield?	57		
8.1. Photonic applications 57 8.1.1. Efficient white light emitting materials 57 8.1.2. Quantum-cutting phosphors for energy efficient lighting and plasma display applications 58 8.1.3. Upconversion materials and solar cells. 59 8.2. Biophotonic applications 59 8.2.1. Photodynamic therapy. 59 8.2.2. FRET based and other biological detection 59 8.2.3. In vivo and in vitro imaging. 60 9. Conclusions and perspectives 61 Acknowledgements 62 62	8.	Applications					
8.1.1. Efficient white light emitting materials 57 8.1.2. Quantum-cutting phosphors for energy efficient lighting and plasma display applications 58 8.1.3. Upconversion materials and solar cells. 59 8.2. Biophotonic applications 59 8.2.1. Photodynamic therapy. 59 8.2.2. FRET based and other biological detection 59 8.2.3. In vivo and in vitro imaging. 60 9. Conclusions and perspectives 61 Acknowledgements 62 62		8.1.	Photonic	applications	57		
8.1.2. Quantum-cutting phosphors for energy efficient lighting and plasma display applications 58 8.1.3. Upconversion materials and solar cells. 59 8.2. Biophotonic applications 59 8.2.1. Photodynamic therapy. 59 8.2.2. FRET based and other biological detection 59 8.2.3. In vivo and in vitro imaging. 60 9. Conclusions and perspectives 61 Acknowledgements 62 References 62			8.1.1.	Efficient white light emitting materials	57		
8.1.3. Upconversion materials and solar cells. 59 8.2. Biophotonic applications. 59 8.2.1. Photodynamic therapy. 59 8.2.2. FRET based and other biological detection. 59 8.2.3. In vivo and in vitro imaging. 60 9. Conclusions and perspectives 61 Acknowledgements. 62 References 62			8.1.2.	Quantum-cutting phosphors for energy efficient lighting and plasma display applications	58		
8.2. Biophotonic applications 59 8.2.1. Photodynamic therapy. 59 8.2.2. FRET based and other biological detection 59 8.2.3. In vivo and in vitro imaging. 60 9. Conclusions and perspectives 61 Acknowledgements 62 References 62			8.1.3.	Upconversion materials and solar cells	59		
8.2.1. Photodynamic therapy. 59 8.2.2. FRET based and other biological detection. 59 8.2.3. In vivo and in vitro imaging. 60 9. Conclusions and perspectives 61 Acknowledgements 62 References 62		8.2.	Biophoto	nic applications	59		
8.2.2. FRET based and other biological detection. 59 8.2.3. In vivo and in vitro imaging. 60 9. Conclusions and perspectives 61 Acknowledgements 62 References 62			8.2.1.	Photodynamic therapy	59		
8.2.3. In vivo and in vitro imaging. 60 9. Conclusions and perspectives 61 Acknowledgements 62 References 62			8.2.2.	FRET based and other biological detection	59		
9. Conclusions and perspectives 61 Acknowledgements 62 References 62			8.2.3.	In vivo and in vitro imaging	60		
Acknowledgements 62 References 62	9.	Conclu	usions and	1 perspectives	61		
References	Acknowledgements						
	Refe	erences			62		

1. Introduction

Rare-earth (RE) doped nanocrystals have been recognized to hold tremendous promises as luminescent materials for photonic and biophotonic applications [1–8]. The photoluminescent properties of trivalent RE-doped materials are dominated by electronic intraconfigurational *f-f* transitions of the RE ion [4]. As the 4*f*-orbitals of the RE ions are well shielded by the filled $5s^25p^6$ orbitals, the intraconfigurational transitions are largely independent of the environment. And, unlike in semiconductor nanoparticles, immediate particle size effects affecting the electronic transitions such as quantum confinement cannot be observed for nanocrystals doped with trivalent RE ions. However, for nanomaterials the luminescence dynamics of the trivalent RE ion can be effectively influenced by the particle size, surface, morphology, strain and crystal phase (Fig. 1) [9–14].

For certain applications RE-based phosphors bear some advantages over other classes of the luminescent materials such as organic dyes or semiconductor quantum dots. RE-doped fluorides can be used like organic dyes and semiconductor nanoparticles for biolabelling, drug delivery as well as in (bio-)imaging [15,16]. However, organic dyes generally suffer from photo-instability, chemical degradation, and cannot be attached to the cell for a long period. Another major limitation of organic dyes are their broad absorption and emission bands. These properties limit the application of an organic dye for biological imaging purposes. Semiconductor quantum dots have a higher photostability compared to organic dyes. Furthermore, their emission bands are narrower and the emission colour and quantum yield can be tuned by the particle size. Yet their bio-application is limited due to the inherent toxicity of most materials [17]. For the excitation of semiconductor materials, normally UV or short wavelength visible light is used; but biological samples often show autofluorescence in this spectral range. In addition, living organisms suffer severe damages upon irradiation with high energy UV light. Many of the outlined drawbacks of organic dyes and semiconductor nanoparticles can be overcome in RE-doped materials. Their advantage lies in the unprecedented photostability, high chemical robustness and low toxicity. RE-doped fluorides also feature narrow excitation and emission bands due to the intraconfigurational f-f electronic transitions. In addition, the longer lifetime (up to milliseconds) of the excited states makes time-resolved detection possible which is very important for luminescence microscopy and biosensing [18-20]. For all these reasons, RE^{3+} -doped binary and ternary fluoride nanoparticles are currently receiving a tremendously growing interest.

In this review article, the developments of trivalent RE^{3+} -doped binary and ternary fluoride nanoparticles that took place in the last decade will be discussed. After a short introduction to the photophysics of trivalent RE ions, we will discuss suitable host materials. Then a variety of recently developed synthesis protocols which allow a precise control on shape, size, morphology, lattice strain and crystal phase of the host materials which allow for a decisive tuning of the luminescence of the doped RE^{3+} ions will be presented.

Lately, it was realized that surface modification including passivation and functionalization is an effective tool not only to enhance the luminescence efficiency but also to make the Download English Version:

https://daneshyari.com/en/article/5397579

Download Persian Version:

https://daneshyari.com/article/5397579

Daneshyari.com