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a b s t r a c t

Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films are pre-
pared by introducing a new solvent 2-ethoxyethanol and are optimized by acid-free solvent post
treatment. The behavior of samples are investigated with various coating conditions. The change of
electrical performance for 2-ethoxyethanol added PEDOT:PSS films with various post treatment methods
is studied. Upon post treatment, the sheet resistance greatly decreases attributed to a structural change
with removal of insulating PSS in the film. Based on these conductive films, we demonstrate efficient
ITO-free green phosphorescent organic light-emitting diodes (OLEDs). The efficiency of OLEDs with post-
treated PEDOT:PSS electrodes is greater than that of OLEDs with untreated PEDOT:PSS electrodes. The
results illustrate a promising future for flexible, low-cost, ITO-free OLEDs employing PEDOT:PSS elec-
trodes optimized by 2-ethoxyethaol with acid-free solvent post treatment.

& 2017 Elsevier B.V. All rights reserved.

1. Introduction

Recent advances on the organic light-emitting diodes (OLEDs)
have led to broad applications in lighting sources and displays due
to the potential for low-cost roll-to-roll processing, mechanical
flexibility, thin and lightweight form-factor, optically transparency,
and energy-efficient emission [1,2]. The general bottom-emitting
OLEDs consist of thin-film organic semiconductors including hole/
electron transport and emissive materials are sandwiched be-
tween the transparent electrode and the opaque metal electrode.
Injected holes and electrons from both electrodes can generate
photons by going through charge transport and recombination
processes, etc [3,4]. Not to mention, indium din oxide (ITO) is the
most common transparent electrode material for conventional
OLEDs owing to its high conductivity and transmittance as well as
well-established fabrication process. However, ITO is fabricated by
vacuum process and needs elevated processing temperature
(4300 °C). In addition, ITO suffers from poor mechanical flex-
ibility and high material costs [5,6]. These obstacles of ITO make it
challenging its application to flexible, low-cost OLEDs. In this re-
gard, various alternative transparent electrodes such as conductive
polymers [7,8], carbon nanotubes [9,10], graphenes [11,12], silver

nanowires [13,14], and metal grids [15,16] have been extensively
investigated to replace ITO. Among candidates for alternative
transparent electrodes, poly(3,4-ethylenedioxythiophene):poly
(styrenesulfonate) (PEDOT:PSS) has attracted significant interest as
a promising transparent electrode because of its excellent me-
chanical flexibility, high conductivity, high transmittance, and
compatibility with low-cost solution-processing [17,18]. Such
benefits of highly conductive PEDOT:PSS enable for PEDOT:PSS-
based ITO-free OLEDs which can lead to high device performance
by careful optimization process for PEDOT:PSS electrodes [7,19,20].

To increase the low electrical conductivity of below 1 S/cm for
the pristine PEDOT:PSS, various techniques have been in-
vestigated. The most widely used method is to introduce polar
organic compounds having a high boiling point such as ethylene
glycol (EG) and dimethyl sulfoxide (DMSO) into PEDOT:PSS for-
mulation, which significantly increase the conductivity higher
than 700 S/cm [8,21]. In addition, the introduction of mannitol,
ionic liquid, acids, anionic surfactants, ultrasonic method, and in-
situ grafting method etc in PEDOT:PSS solutions also increases the
conductivity of PEDOT:PSS films [22–26]. To further enhance the
conductivity, various solvent post treatments have been per-
formed by several groups [8,27–30]. We have reported con-
ductivity enhanced PEDOT:PSS films (1417 S/cm), which are post-
treated in an EG bath [8]. The resulting post-treated PEDOT:PSS
transparent electrodes are successfully employed into OLEDs and
OPV cells and show comparable performance to reference devices
with ITO transparent electrodes [8,31]. Furthermore, methanol,
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hexafluoroacetone, or sulfuric acid are used as solvents for post
treatment to improve the conductivity of PEDOT:PSS films
[28,29,32].

In this study, highly conductive PEDOT:PSS transparent elec-
trodes prepared with 2-ethoxyethanol, which is a newly in-
vestigated solvent for highly conductive PEDOT:PSS films, have
been reported. The electrical and optical properties for PEDOT:PSS
thin films added by 2-ethoxyethanol are studied with conditions
for film processing. The acid-free solvent post treatment con-
siderably enhances the electrical performance of PEDOT:PSS films
mixed with 2-ethoxyethanol. The change of electrical performance
for 2-ethoxyethanol added PEDOT:PSS films with various post
treatment methods is studied. The PEDOT:PSS with 2-ethox-
yethanol films greatly reduce a sheet resistance from 312.5 to
210.7Ω/sq after solvent post-treatment. The optimized PEDOT:
PSS-based OLEDs with solvent post-treated PEDOT:PSS films
achieve the higher device efficiency compared to OLEDs with
untreated PEDOT:PSS electrodes. The results demonstrate that the
PEDOT:PSS films optimized with the new solvent of 2-ethox-
yethanol and acid-free post treatment are highly promising to
replace the conventional ITO electrodes for low-cost, flexible ITO-
free OLEDs.

2. Experimental

2.1. Fabrication and characterization of PEDOT:PSS electrodes

6 vol% of ethylene glycol or 20 vol% of 2-ethoxyethanol are
added into PEDOT:PSS (Clevios PH1000, Heraeus, Germany) for-
mulations. The formulations are spin-coated on glass substrates at
1500 rpm for 30 s. Subsequently, the films are baked on a hot plate
at 120 °C for 15 min in air ambient [8,33]. For various solvent post
treatment, several PEDOT:PSS films are immersed in solvent bath
(dip treatment) or solvent is dropped on the films (drop treat-
ment). The solvents used for post treatment are methanol,
2-ethoxyethanol, and EG. The post-treated films are baked on a
hot plate at 120 °C for 15 min. Sheet resistance of films is ex-
amined by a van der Pauw method. We perform transmittance
measurements by using a spectrophotometer (Optizen POP). The
values of transmittances in this work include the glass substrate
absorption. The film thickness is examined by a surface profil-
ometer (Alphastep 500, Tencor). The AFM images are recorded in
tapping mode (Icon-PT, Bruker).

2.2. Fabrication and characterization of OLEDs

All devices are fabricated by thermal evaporation in a high va-
cuum chamber (base pressure �10-8 mbar). The structure of de-
vices is as follows (bottom to top): ITO or PEDOT:PSS films as a
bottom electrode/10 nm 1,4,5,8,9,11-hexaazatriphenylene hex-
acarbonitrile (HAT-CN)/50 nm N,N′-di(naphthalene-1-yl)N,N′-di-
phenyl-benzidine (NPB)/10 nm HAT-CN/50 nm NPB/10 nm HAT-CN/
40 nm NPB (total HTL thickness: 170 nm)/10 nm 4,4′,4′′-tris(N-car-
bazolyl)-triphenylamine (TCTA)/20 nm 2,6-bis(3-(carbazol-9-yl)
phenyl) pyridine (DCzPPy): tris (2-phenylpyridine)iridium (Ir(ppy)3)
(7 wt.%)/60 nm 1,3-bis(3,5-dipyrid-3-yl-phenyl)benzene (BmPyPB)/
1 nm LiF/100 nm Al. The film thickness, doping concentration, and
material are carefully optimized by optical simulation and several
experiments for high performance [34]. The devices are en-
capsulated with an additional glass using epoxy glue in nitrogen
atmosphere. The device areas are 2�2 mm2. The current-voltage-
luminance characteristics and electroluminescence spectra are ob-
tained using a source-measure unit and a goniometer-equipped
spectroradiometer (Minolta CS-2000).

3. Results and discussion

Fig. 1 exhibits chemical structures of PEDOT:PSS and 2-ethox-
yethanol which is used as a conductivity enhancement agent. Due
to the high-boiling point (about 135 °C) and the polar nature of
2-ethoxyethanol, the conductivity of PEDOT:PSS films can be greatly
improved to 761.7 S/cm by introducing 20 vol% of 2-ethoxyethanol
as reported in our previous work [35]. The high-boiling point polar
solvents such as DMSO and EG significantly increase the con-
ductivity of PEDOT:PSS films by a strong screening effect and fa-
vorable morphological changes as reported elsewhere [21,36].

Fig. 2 shows the behavior of sheet resistance and average
transmittance at visible wavelengths (400–800 nm) of multi-
layered PEDOT:PSS films mixed with 20 vol% of 2-ethoxyethanol
(PEDOT:PSS2ee) with respect to the number of PEDOT:PSS layers.
The layers are spin-coated at 1000 rpm. The sheet resistance and
transmittance of films monotonically decrease with increasing the
number of layers as expected. It is worth noting that the PEDOT:
PSS2ee film has an excellent wettability so that multilayer coating

Fig. 1. Chemical structures of a) PEDOT:PSS and b) 2-ethoxyethanol.

Fig. 2. Sheet resistances and transmittances for 2-ethoxyethanol doped PEDOT:PSS
films with respect to the number of layers.
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