ARTICLE IN PRESS

Journal of Luminescence 182 (2017)

Contents lists available at ScienceDirect

Journal of Luminescence

journal homepage: www.elsevier.com/locate/jlumin

Full Length Article

Excitation and emission spectra of $LaInO_3$ -based solid solutions doped with Sm^{3+} , Sb^{3+}

E.K. Yukhno^a, L.A. Bashkirov^{a,*}, P.P. Pershukevich^b, I.N. Kandidatova^a, N. Mironova-Ulmane^c, A. Sarakovskis^c

^a Belarusian State Technological University, 13a Sverdlova Str., Minsk 220006, Belarus

^b Stepanov's Institute of Physics, Belarusian National Academy of Sciences, 68 Nezavisimosti Ave., Minsk 220072, Belarus

^c Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., Riga LV-1063, Latvia

ARTICLE INFO

Article history: Received 23 November 2015 Received in revised form 18 July 2016 Accepted 11 October 2016

Keywords: LaInO₃:Sm³⁺ Sb³⁺ Solid solution Photoluminescence Sensitizer

ABSTRACT

X-ray analysis showed that all the ceramic samples of La_{1-x}Sm_xInO₃ (0.010 $\leq x \leq 0.025$) solid solutions were single-phased but the samples of nominal composition of LaIn_{0.98}Sb_{0.02}O₃, La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ contained a small amount of impurity phase of LaSbO₃-based solid solutions. It was established that La_{0.98}Sm_{0.02}InO₃ solid solution under the excitation of 275 nm and 320 nm exhibits the strongest photoluminescence among La_{1-x}Sm_xInO₃ solid solutions with 0.010 $\leq x \leq 0.025$. Photoluminescence bands located in wavelength ranges of 550–580 nm, 585–625 nm and 630–680 nm exhibit 2–3 clear maxima each. According to the locations of these maxima we calculated the magnitudes of Stark splitting of ⁶H_{5/2}, ⁶H_{7/2}, ⁶H_{9/2} multiplets of the main ⁶H term of Sm³⁺ ion by crystal field of La_{1-x}Sm_xInO₃ solid solutions with orthorhombically distorted perovskite structure. It was established that the intensity of PL spectra obtained at λ_{ex} =320, 405 and 470 nm is significantly higher for sample of La_{0.98}Sm_{0.02}InO₃ nominal composition than that of La_{0.98}Sm_{0.02}InO₃ solid solution. It could be explained by sensitizing effect of Sb³⁺ ions on Sm³⁺ ions photoluminescence or by higher PL intensity of Sm³⁺ ions of impurity phase than of LaInO₃ matrix.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the past ten years much attention was drawn to optical properties of perovskite LaInO₃-based solid solutions doped with RE ions (RE= Pr^{3+} , Sm³⁺, Eu³⁺, Tb³⁺) and/or Bi³⁺ ion because of their visible light emission [1-4]. Substitution of La³⁺ ions by Bi³⁺ ions in LaInO₃: Eu³⁺ shows sensitizing effect on Eu³⁺ luminescence [3]. Sb^{3+} ions have $5s^2$ electron configuration similar to $6s^2$ electron configuration of Bi³⁺ ions. So Sb³⁺ ions are expected to be efficient sensitizer of RE ions. Luminescent properties of Sb³⁺ and Bi^{3+} ions in *LnBO*₃ (*Ln*=Sc, Y, La, Gd, Lu) were investigated in [5–10]. In these compounds Sb^{3+} and Bi^{3+} ions are located in Ln^{3+} ions sublattice. Bi³⁺ ions are sensitizers of Eu³⁺ luminescence in (Y, Gd)BO_3 and energy transfer is $Bi^{3\,+}\!\rightarrow\!Gd^{3\,+}\,\ldots\,Gd^{3\,+}\rightarrow$ Eu^{3+} [6,7]. At the same time in the work [8] no energy transfer between Sb^{3+} ions and Eu^{3+} ions in YBO₃-based solid solution was observed and both Sb³⁺ and Eu³⁺ ions acted as co-activators. There is no research devoted to luminescent properties of Sb³⁺ ions located in In³⁺ ions sublattice of LaInO₃. Such a substitution is

* Corresponding author. *E-mail address*: bashkirov@belstu.by (L.A. Bashkirov). possible because Sb³⁺ ionic radius is only 0.02 Å less than that of In³⁺ ($r_{In^{3+}} = 0.92$ Å [11]) and 0.14 Å less than that of La³⁺ ($r_{La^{3+}} = 1.04$ Å [11]). In the present work we investigate excitation and emission spectra of LaIn_{0.98}Sb_{0.02}O₃, La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ and La_{1-x}Sm_xInO₃ (0.010 $\le x \le 0.025$) solid solutions. All LaInO₃-based solid solutions were synthesized by solid-state reaction method and had the structure of orthorhombically distorted perovskite.

2. Experimental

LaInO₃ indate and La_{1-x}Sm_xInO₃ (x=0.010, 0.015, 0.020, 0.025), LaIn_{0.98}Sb_{0.02}O₃, La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ solid solutions ceramic samples were synthesized by solid-state reaction method using mixture of La₂O₃ (99.99%), Sm₂O₃ (99.99%), In₂O₃ (99.99%) and Sb₂O₃ (99.99%) oxides. La₂O₃ and Sm₂O₃ were preheated at 1273 K for 1 h. Stoichiometric amounts of the reactants were mixed with the aid of ethanol, ground in planetary mill (Pulverizette Fritch) in cups with zirconia balls and then pressed in pellets (D=25 mm, h=5-7 mm). The pellets were sintered at 1523 K for 6 h on the Al₂O₃ substrate. The pellets of different composition were not in contact with each other. In order to prevent the pellet-substrate

2

ARTICLE IN PRESS

interaction the pellets were separated from the substrate by thin powder layer of the same composition. Then the pellets were ground, milled and pressed in bars ($5 \times 5 \times 30$ mm). The bars were finally sintered at 1523 K for 6 h. The compounds were characterized by powder X-ray diffraction (XRD) analysis (Bruker D8 Advance) at room temperature using $CuK\alpha$ radiation. Crystal structure parameters of the investigated compounds have been calculated using X-ray structure tabular processor (RTP). SEMimages of indates were obtained with scanning electronic microscope JEOL JSM-5610LV with assistance of Energy Dispersive X-ray Spectrometer JED 22-01. Excitation and emission spectra of ceramic samples were recorded at 300 K using automatic spectrofluorometer SDL-2 composed of MDR-12 high-aperture excitation monochromator and MDR-23 recording monochromator at the Institute of Physics of the National Academy of Sciences of Belarus. Xe-lamp DKsSh-120 was used as excitation source.

3. Results and discussion

XRD patterns of LaInO₃ indate and La_{1-x}Sm_xInO₃ (*x*=0.010, 0.015, 0.020, 0.025) solid solutions (Fig. 1a) showed that all the samples were single-phased and had the structure of orthorhombically distorted perovskite (GdFeO₃-type, *a* < *c*/ $\sqrt{2}$ < *b* [12]). Crystal structure parameters *a*, *b*, *c* and crystal cell volume *V* are presented in Table 1. Samples with nominal composition of LaIn_{0.98}Sb_{0.02}O₃ and La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ had on their XRD patterns (Fig. 1a) not only the peaks corresponding to main perovskite phase but also one impurity peak of small intensity (*d*=3.104 Å, 2 Θ =28.76° for La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃ sample; *d*=3.111 Å, 2 Θ =28.70° for LaIn_{0.98}Sb_{0.02}O₃ sample). This reflex is probably referred to not-reacted Sb₂O₃ oxide or to intermediate

Table 1

Cell parameters (*a*, *b*, *c*), cell volume (*V*) and orthorhombical distortion degree (ε) for LalnO₃ and LalnO₃-based solid solutions doped with Sm³⁺, Sb³⁺.

Composition	Cell parameters					c/√2,Å
	<i>a</i> , Å	b, Å	<i>c</i> , Å	<i>V</i> , Å ³	$\epsilon \cdot 10^2$	
$eq:label_$	5.738 5.732 5.731 5.732 5.724 5.724 5.731 5.735	5.953 5.943 5.944 5.944 5.939 5.932 5.937	8.227 8.228 8.228 8.223 8.224 8.229 8.234	281.0 280.3 280.3 280.2 279.5 279.8 280.3	3.75 3.68 3.72 3.70 3.76 3.51 3.52	5.817 5.818 5.818 5.814 5.815 5.819 5.822

LaSbO₃ compound which is formed during synthesis. The most intensive reflexes *d* parameters for that samples are [13,14] 3.151 and 3.196 Å, respectively. In order to identify the origin of the impurity phase in agate mortar there was made a mixture of $La_{0.98}Sm_{0.02}InO_3$ and Sb_2O_3 compounds with Sm^{3+} : Sb^{3+} ions ratio 1:1. On the XRD pattern of the mixture no peak of Sb₂O₃ phase was observed. The LaIn_{0.98}Sb_{0.02}O₃ sample was additionally sintered at 1523 K for 6 h. The impurity reflex intensity on the XRD pattern of additionally sintered sample did not decreased and remained the same (Fig. 1a). So the impurity reflex is probably referred to LaSbO₃ and La_{1-v}Sm_vSbO₃ solid solutions on its base. The ratio if intensities of the highest reflexes of the impurity phase $(2\Theta = 28.70^{\circ})$ and the main phase $(2\Theta = 30.65^{\circ})$ shows that in the LaIn_{0.98}Sb_{0.02}O₃ sample the amount of impurity phase is about 5% of the main phase. On SEM-images of La_{0.98}Sm_{0.02}InO₃, La_{0.98}Sm_{0.02}In_{0.98}Sb_{0.02}O₃, LaIn_{0.98}Sb_{0.02}O₃ ceramic samples (Fig. 1b) no sign of other phase was observed. Grain size was estimated to be about 0.5-3 µm.

Fig. 1. XRD patterns of LalnO₃, $La_{1-x}Sm_xlnO_3$ (x=0.01, 0.015, 0.02, 0.025), $La_{0.98}Sm_{0.02}ln_{0.98}Sb_{0.02}O_3$, $Laln_{0.98}Sb_{0.02}O_3$ (a); SEM-images of $La_{0.98}Sm_{0.02}lnO_3$, $La_{0.98}Sm_{0.02}lnO_{0.98}Sb_{0.02}O_3$ and $Laln_{0.98}Sb_{0.02}O_3$ ceramic samples (b).

Download English Version:

https://daneshyari.com/en/article/5397971

Download Persian Version:

https://daneshyari.com/article/5397971

Daneshyari.com