
Author's Accepted Manuscript

The First Principles Calculation and Temperature-Sensitive Luminescence Behavior of Optimized Red Phosphor Mg₂Al₄Si₅O₁₈: Eu³⁺

Yue Jing, Oinjia Chen, Mingyu Sui, Zhipeng Ci, Lili Han, Yanwen Chen, Jiachi Zhang, Ji Ma, Yuhua Wang

www.elsevier.com/locate/ilumin

PII: S0022-2313(16)30494-X

DOI: http://dx.doi.org/10.1016/j.jlumin.2016.08.054

Reference: **LUMIN14215**

To appear in: Journal of Luminescence

Received date: 19 April 2016 Revised date: 8 August 2016 Accepted date: 24 August 2016

Cite this article as: Yue Jing, Qinjia Chen, Mingyu Sui, Zhipeng Ci, Lili Han Yanwen Chen, Jiachi Zhang, Ji Ma and Yuhua Wang, The First Principles Calculation and Temperature-Sensitive Luminescence Behavior of Optimized Eu^{3+} . Mg₂Al₄Si₅O₁₈: Journal Red Phosphor of Luminescence http://dx.doi.org/10.1016/j.jlumin.2016.08.054

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

The First Principles Calculation and Temperature-Sensitive Luminescence Behavior of Optimized Red Phosphor Mg₂Al₄Si₅O₁₈: Eu³⁺

Yue Jing, a,1 Qinjia Chen, Al Mingyu Sui, Zhipeng Ci, Lili Han, Yanwen Chen, Jiachi Zhang,*ab Ji Ma, Yuhua Wangab

^aKey Laboratory for Magnetism and Magnetic Materials, Ministry of Education, Lanzhou University, Lanzhou 730000, China.

^bKey Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China.

^cCollege of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730000, China. Muschild

*Corresponding authors: Zhipeng Ci, Jiachi Zhang

Email address: cizhp@lzu.edu.cn

Tel.: +86 931 8912772; fax: +86 931 8913554.

¹ Both the authors are co-first authors.

Abstract

Eu³⁺ doped Mg₂Al₄Si₅O₁₈ phosphors were prepared by the solid-state reaction. The first principles calculation, XRD, diffuse reflection spectra, photoluminescence spectra and thermal quenching are carried out to investigate the electron structure, crystal structure, photoluminescence and thermal properties. The calculation results show that Mg₂Al₄Si₅O₁₈ possesses the direct band gap of about 5.1 eV. With the introduction of Eu³⁺, the energy gap becomes obviously smaller due to the discontinuity of exchange-correlation energy. Between HOMOs and LOMOs, a series of f orbitals of Eu³⁺ can be observed, which is the essential condition to realize the efficient 4f-4f transitions of Eu³⁺. The experimental results indicate that the samples can efficiently absorb the UV-light and emit the red light with the highest peak at 614 nm. With the co-doping of Bi³⁺ as sensitizer, the emission intensity of Eu³⁺ increases by about 49% due to the energy transfer between Bi³⁺ and Eu³⁺. With the introduction of Li⁺/Na⁺/K⁺ as charge compensators, the emission intensities of Mg₂Al₄Si₅O₁₈: Eu³⁺ are enhanced by about 22%, 18% and 5%. With the temperature increase, the emission intensity of all samples,

Download English Version:

https://daneshyari.com/en/article/5398010

Download Persian Version:

https://daneshyari.com/article/5398010

<u>Daneshyari.com</u>