Contents lists available at ScienceDirect

Journal of Luminescence

journal homepage: www.elsevier.com/locate/jlumin

Fano's antiresonance and crystal-field study of Cr^{3+} in metaphosphate glasses

O. Taktak^{a,*}, H. Souissi^a, O. Maalej^{b,c}, B. Boulard^b, S. Kammoun^a

^a Laboratoire de Physique Appliquée, Groupe de Physique des Matériaux Luminescents, Université de Sfax, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax, Tunisia

^b Institut des Molécules et Matériaux du Mans. UMR CNRS 6283. Université du Maine. Av. O. Messiaen. 72085 Le Mans cedex 09. France ^c Laboratoire de Chimie Inorganique, Université de Sfax, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax, Tunisia

ARTICLE INFO

Article history: Received 13 April 2016 Accepted 16 August 2016 Available online 20 August 2016

Keywords: Crystal-field Transition-metal Phosphate glasses Fano's antiresonance

ABSTRACT

This work is devoted in first part to a study of the features observed on the ${}^{4}T_{2g}$ (${}^{4}F$) absorption band of phosphate glasses containing Cr^{3+} . These features results from interaction of the ${}^{2}E_{g}$ (${}^{2}G$) and ${}^{2}T_{1g}$ (${}^{2}G$) sharp levels with the vibrationally broadened ${}^{4}T_{2g}$ (${}^{4}F$) quasi-continuum via spin-orbit coupling and have been analyzed in the frame of the Fano's antiresonance model. In second part, the electronic structure of Cr^{3+} ion occupying Oh site symmetry in the phosphate glasses is determined by the crystal-field analysis. The influence of the different oxides (Na₂O, PbO, ZnO) on the spectroscopic properties of Cr^{3+} is evaluated. In metaphosphate glasses, we found that Na₂O and PbO oxides act as glass modifiers while ZnO enters the glass forming network.

© 2016 Elsevier B.V. All rights reserved.

Contents

1.	Introduction.	183				
2.	Experimental support	184				
3.	Theoretical background	184				
	3.1. Fano's antiresonance method	184				
	3.2. Crystal-field study of Cr ³⁺ in phosphate glasses	185				
	3.3. Structural aspect of glass.	185				
4.	Results and discussion	186				
5.	Conclusion	188				
Ref	References					

1. Introduction

Phosphate glasses have several advantages due to their superior physical properties: high thermal expansion coefficient, low melting and softening temperatures, high electrical conductivity and high ultraviolet and far-infrared transmissions [1–5]. There are widely used in fast ion conducting materials [6,7], laser hosts, glass-to-metal seals, IR transmission components, energy storage devices and solid state batteries. More recently, their potential use as bio-materials has been studied [8-10]. Phosphate glasses doped

* Corresponding author. E-mail address: olfa.taktak@yahoo.fr (O. Taktak).

http://dx.doi.org/10.1016/j.jlumin.2016.08.034 0022-2313/© 2016 Elsevier B.V. All rights reserved. with transition metal ions attract much attention because of their interesting applications in solid state lasers [11], luminescent solar energy concentrators [12] and optical fibers for communication devices [13]. Many studies have been carried out on the phosphate glasses containing Cr³⁺ [14,15].

The oxide glasses doped with Cr³⁺ are of great interest due to their high nonlinear optical parameters. Actually the Cr³⁺ ions lead to the enhancement of the second harmonic generation SHG and the Racah parameters play crucial role. The change of valence states of Cr³⁺ ions is responsible of the formation of the local charge density which is characteristic of the SHG [16].

The investigated phosphate glasses in this study are namely sodium metaphosphate (Na₂O-P₂O₅ called NaP), lead metaphosphate

Review

(PbO–P₂O₅ called PbP) and zinc metaphosphate (ZnO–P₂O₅ called ZnP). P₂O₅ is a glass former oxide and the divalent oxides (PbO and ZnO) have a different role than the one of Na₂O. These two divalent oxides are accepted by most glass scientists to behave in a dual role, partly as modifier and partly as glass former within the glass network while Na₂O exhibits only the role of modifier [17,18]. The optical visible absorption spectra of Cr³⁺ doped phosphate glasses of the three varieties were measured by Marzouk et al. [14] at room temperature. These spectra consist of broad absorption bands with the presence of features which are attributed to the d–d transitions of the active center Cr³⁺ with 3d³ configuration.

In this work, we firstly focus the study on the features observed in the low absorption bands of Cr^{3+} ions in the phosphate glasses using the Fano's antiresonances model. These spectra consist of broad absorption bands attributed to spin-allowed d-d transitions of center Cr³⁺ with the presence of features related to spin-forbidden d-d transitions. In many published works on Cr3+-doped glasses [14,19–24] the interpretation of the additional features is incorrect in view of the Fano's antiresonances model [25]. The features have been regarded as peaks while they are in fact dips, leading to wrong energies values. In a second step, we present a detailed crystal-field analysis of electronic energy levels of Cr³⁺ in the phosphate glasses. This analytical study is based on the Racah tensor algebraic method and was carried out for the $\mbox{\rm Cr}^{3+}$ with an O_h site symmetry. For the electronic structure study with crystal-field theory, we have added a corrective term in the Hamiltonian (H_{Trees}) in order to improve the precision of the theoretical calculations. Moreover, we have taken into account the splitting of the Stark levels under the spin-orbit interaction. The majority of the published works do not consider this interaction because of the unavailability of spin-orbit coupling constant.

We choose to study metaphosphate glasses with different cations (Na⁺, Pb²⁺ and Zn²⁺) to evaluate the variation of Racah *B*, *C* parameters and crystal-field Dq parameters and to understand the role of each cation on the spectroscopic properties of Cr^{3+} .

2. Experimental support

The theoretical analysis realized in this work is based on the experimental spectroscopic data obtained by Marzouk et al. [14]. The optical absorption spectra of 0.1 wt% Cr^{3+} -doped phosphate glasses $Na_2O-P_2O_5$ and $XO-P_2O_5$ (X=Pb and Zn) are presented in Fig. 1. In the spectra, two quartet broad bands are attributed to the spin-allowed d-d transitions in O_h symmetry: ${}^{4}A_{2g} ({}^{4}F) \rightarrow {}^{4}T_{1g} ({}^{4}F)$. In addition, features are also observed on

Fig. 1. Optical absorption spectra of Cr^{3+} doped phosphate glasses (solid line) at room temperature [14] and Gaussian adjustments (dashed line).

Table 1

The energy values of the different transitions (cm^{-1}) for Cr^{3+} in phosphate glasses [14].

transitions	Na ₂ O-P ₂ O ₅	PbO-P ₂ O ₅	ZnO-P ₂ O ₅
	14,598	14,493	14,598
	15,151	15,151	15,038
	15,873	15,723	15,625
	22,727	21,834	21,739

the ${}^{4}T_{2g}$ (⁴F) absorption band of each phosphate glass in the vicinity of the sharps levels attributed to the spin-forbidden transitions from the quartet ground state ${}^{4}A_{2g}$ (⁴F) to the doublet excited states ${}^{2}E_{g}$ (²G) and ${}^{2}T_{1g}$ (²G). The energies of all the above transitions given by Marzouk et al. [14] are listed in Table 1.

3. Theoretical background

The features observed on the ${}^{4}T_{2g}$ (${}^{4}F$) absorption band of Cr³⁺ in the vicinity of the sharps levels attributed to the transition from ground state ${}^{4}A_{2g}$ (${}^{4}F$) to the excited state ${}^{2}E_{g}$ (${}^{2}G$) and ${}^{2}T_{1g}$ (${}^{2}G$) will be analyzed by the Fano's antiresonance model [25].

On the following section we remember briefly the Fano's antiresonance and crystal-field theories. Also, we discuss the structural aspect of glass.

3.1. Fano's antiresonance method

Antiresonances features are analyzed by means of the Fano's profile function $R(\omega)$. This function is obtained from the ratio of the experimental absorption spectrum to the background spectrum, the latter being obtained by fitting the wings of the experimental absorption spectrum with a Gaussian function. In the notation of Sturge et al. [26], the theoretical profile $R(\omega)$ is given by:

$$R(\omega) = 1 + \sum_{i} \rho_{i}^{2} \frac{q_{i}^{2} + 2q_{i}\xi_{i} - 1}{1 + \xi_{i}^{2}}$$
(1)

where:

$$\xi_{i} = \frac{\omega - \omega_{ri}}{\gamma_{i}}, \quad q_{i} = \frac{\langle \phi_{i} | z | \psi_{0} \rangle}{\sqrt{\pi \gamma_{i}} \rho_{i} \langle \psi_{E_{i}}^{(d)} | z | \psi_{0} \rangle}$$

$$\gamma_{i} = \pi \left| \langle \psi_{E_{i}}^{(a)} | H_{i} | \varphi_{i} \rangle \right|, \quad \rho_{i} = \langle \psi_{E_{i}}^{(a)} | \psi_{E_{i}}^{(d)} \rangle$$

The index *i* ranges over the number of sharp levels (two in our case, i=1 for ${}^{2}E_{g}$ (${}^{2}G$) and i=2 for ${}^{2}T_{1g}$ (${}^{2}G$)). Interactions between these sharp levels and the vibrationally broadened ${}^{4}T_{2g}$ (${}^{4}F$) are neglected. φ_{i} is the wave function of the sharp level in the absence of the interaction H_{i} with the continuum (spin–orbit in our case). Φ_{i} represents a modification of φ_{i} by the continuum and ψ_{0} the ground state. *z* is the optical operator (electric or magnetic dipole). $\psi_{E_{i}}^{(a)}$ and $\psi_{E_{i}}^{(d)}$ arise, respectively, by auto-ionization state of φ_{i} and by direct transition from ground state ψ_{0} .

The four parameters ρ_i^2 , γ_i , q_i and ω_{ri} are to be fitted. is the overlap integral of and; this parameter gives the fraction of the band states that take part in the interference process and thus quantifies the relative intensity of the dip. γ_i indicates the spectral width of the auto-ionized state φ_i . q_i is a numerical index which characterizes the line profile: $|q_i| \sim 0$ the line shape is a though (antiresonance), $|q_i| = \infty$ the line shape is a peak . Finally ω_{ri} is the resonance energy which is slightly shifted due to the interaction with the continuum, compared to the resonance energy for the unperturbed sharp absorption line.

Download English Version:

https://daneshyari.com/en/article/5398149

Download Persian Version:

https://daneshyari.com/article/5398149

Daneshyari.com