
Author's Accepted Manuscript

Effect of flux on the composition and luminescent properties of $Ca_{0.68}Mg_{0.2}SiO_3:0.12Eu^{3+}$ red phosphor

Jin shan Wang, Da-chuan Zhu, Qi Zheng, Tao Han

www.elsevier.com/locate/jlumin

PII: S0022-2313(15)30310-0

DOI: http://dx.doi.org/10.1016/j.jlumin.2016.06.063

Reference: LUMIN14092

To appear in: Journal of Luminescence

Received date: 28 July 2015 Revised date: 15 June 2016 Accepted date: 29 June 2016

Cite this article as: Jin shan Wang, Da-chuan Zhu, Qi Zheng and Tao Han, Effect of flux on the composition and luminescent properties of Ca_{0.68}Mg_{0.2}SiO₃:0.12Eu³⁺ red phosphor, *Journal of Luminescence* http://dx.doi.org/10.1016/j.jlumin.2016.06.063

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Effect of flux on the composition and luminescent properties of Ca_{0.68}Mg_{0.2}SiO₃:0.12Eu³⁺ red phosphor

Jin shan Wang^a, Da-chuan Zhu^{a,*}, Qi Zheng^a, Tao Han^b

- a. College of Material Science & Engineering, Sichuan University, Sichuan Chengdu,
 610065, China;
 - b. Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Yongchuan Chongqing 402160, China;

Abstract: Ca_{0.68}Mg_{0.2}SiO₃:0.12Eu³⁺ red-emitting phosphor was synthesized via one-step calcination process of the precursor prepared by chemical coprecipitation with different fluxes. Then X-ray diffraction and fluorescence spectrophotometry were adopted to investigate the structure and luminescent properties of Ca_{0.68}Mg_{0.2}SiO₃:0.12Eu³⁺. The results indicated that adding fluxes increased the crystalline significantly while the phase composition of samples was not changed. Furthermore, the fluxes improved the intensity of emission peak and the quantum efficiency greatly. With the concentration of flux (Li₂CO₃ or K₂CO₃) increasing, the emission intensity of Ca_{0.68}Mg_{0.2}SiO₃:0.12Eu³⁺ firstly increased and then decreased. Meanwhile, red-shift phenomenon was observed in the emission spectra. The optimal adding fraction of Li₂CO₃ and K₂CO₃ was 6% and 5% respectively, and the luminous intensity of samples calcined with the optimum adding amount of Li₂CO₃, K₂CO₃ is 42 and 48 times that of the samples without flux. K₂CO₃ showed a better effect on improving the emission intensity of the phosphors than Li₂CO₃.

Keywords: Ca_{0.68}Mg_{0.2}SiO₃:0.12Eu³⁺; Flux; Emission intensity; Red phosphor

^{*} Corresponding author.

Download English Version:

https://daneshyari.com/en/article/5398312

Download Persian Version:

https://daneshyari.com/article/5398312

<u>Daneshyari.com</u>