Author's Accepted Manuscript

Optical spectroscopy and crystal field calculation of Tb³⁺ doped in YAl₃(BO₃)₄ single crystal

N. Ben Amar, M.A. Hassairi, M. Dammak

www.elsevier.com/locate/ilumin

PII: S0022-2313(15)30387-2

DOI: http://dx.doi.org/10.1016/j.jlumin.2016.01.023

Reference: **LUMIN13820**

Journal of Luminescence To appear in:

Received date: 14 August 2015 Revised date: 26 December 2015 Accepted date: 19 January 2016

Cite this article as: N. Ben Amar, M.A. Hassairi and M. Dammak, Optica spectroscopy and crystal field calculation of Tb³⁺ doped in YAl₃(BO₃)₄ singl crystal, Journal of Luminescence, http://dx.doi.org/10.1016/j.jlumin.2016.01.023

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Optical spectroscopy and crystal field calculation of Tb³⁺ doped in YAl₃(BO₃)₄ single crystal

N. Ben Amar, M. A. Hassairi, M. Dammak*

Université de Sfax, Faculté des Sciences de Sfax, Département de Physique,

Laboratoire de physique appliquée, groupe de physique des matériaux luminescent, Sfax,

Tunisie

Abstract

Single crystals of YAl₃(BO₃)₄ doped with 2.8% Tb³⁺ were grown by spontaneous nucleation from K₂Mo₃O₁₀ and B₂O₃ flux. The electronic structure of Tb³⁺ ions doped in YAl₃(BO₃)₄ crystals are investigated using photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies. Emission spectra at room and low temperature were measured and were identified from the excited ⁵D₄ to the ground state multiplets ${}^{7}F_{0.1,2,3,4,5,6}$. The main emission detected around 540 nm corresponds to the ⁵D₄-⁷F₅ transition. Calorimetric parameters of the Tb³⁺ ions green emission in YAB are calculated (x = 0.30, y = 0.67). The corresponding decay time around 2.74 ms is fitted with a simple exponential curve. The observed transitions are assigned and analyzed on the basis of group theory assuming that Tb³⁺ ion occupies a D₃ symmetry site. The experimental Stark energy levels of the Tb³⁺ manifolds are established. The crystal field parameters were determined. A best fit between theoretical and experimental energy levels is obtained. The general trend of the crystal field parameters of rare earth ions in YAB host is confirmed. The calculated N_v crystal field strength parameters present a linear variation with 4f electrons number over the rare earth series.

Key words: Optical spectroscopy, Crystal field, Rare earth ions, YAB: Tb³⁺.

^{*}Corresponding author, E-mail: madidammak@yahoo.fr

Download English Version:

https://daneshyari.com/en/article/5398531

Download Persian Version:

https://daneshyari.com/article/5398531

<u>Daneshyari.com</u>