
Author's Accepted Manuscript

Controllable Synthesis and Characterization of CdS Quantum Dots by a Microemulsion-mediated Hydrothermal Method

Rongrong Chen, Boning Han, Lin Yang, Yanmin Yang, Ying Xu, Yaohua Mai

www.elsevier.com/locate/ilumin

PII: S0022-2313(15)30287-8

DOI: http://dx.doi.org/10.1016/j.jlumin.2015.12.006

Reference: **LUMIN13750**

To appear in: Journal of Luminescence

Received date: 22 July 2015 Revised date: 1 December 2015 Accepted date: 7 December 2015

Cite this article as: Rongrong Chen, Boning Han, Lin Yang, Yanmin Yang, Ying Xu and Yaohua Mai, Controllable Synthesis and Characterization of Cds Quantum Dots by a Microemulsion-mediated Hydrothermal Method, Journal c Luminescence, http://dx.doi.org/10.1016/j.jlumin.2015.12.006

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Controllable Synthesis and Characterization of CdS Quantum Dots by a Microemulsion-mediated Hydrothermal Method

Rongrong Chen, Boning Han, Lin Yang*, Yanmin Yang, Ying Xu, Yaohua Mai*

College of Physics Science and Technology, Hebei University, Baoding, 071002, China

*Corresponding authors. Tel.: +86 312 5077383; fax: +86 312 5077383.

E-mail addresses: yanglin@hbu.edu.cn (L.Yang), yaohuamai@hbu.edu.cn (Y. Mai)

Abstract

CdS QDs were successfully synthesized through a chemical reaction between cadmium acetate

dehydrate and thioacetamide by using a microemulsion-mediated hydrothermal method. The properties of

as-prepared CdS QDs can be controlled by using Emulsifier OP and CTAB surfactant, which produce a

universal cubic phase and an unusual hexagonal phase, respectively. As a comparison, CdS QDs prepared

by CTAB exhibit a better crystallinity and dispersibility. A possible mechanism involving the critical role

of surfactant in the formation of crystal structure has also been explored in this paper. It is also found that

the crystal size gradually increase with the increase of temperature, and the observation of red shift in the

absorption and emission peaks gives a clear evidence of quantum confinement effect. All the desired

properties of CdS QDs synthesized in this study imply the possibility of the preparation of high quality

QDs under the appropriate reaction conditions.

Key words: CdS; Nanocrystalline materials; Crystal structure; Morphology; Luminescence

Introduction

Nanocrystalline semiconductors have attracted considerable attention because of their novel

optical-electronic properties and their promising applications in biological imaging, solar energy,

photodetectors, and so on [1]. As an important semiconductor compound of II-IV binary compound

semiconductor, cadmium sulfide (CdS) quantum dots (QDs) exhibit unique size-tunable optical and

Download English Version:

https://daneshyari.com/en/article/5398640

Download Persian Version:

https://daneshyari.com/article/5398640

<u>Daneshyari.com</u>