
Author's Accepted Manuscript

Sonochemical Synthesis of Highly Luminescent Ln_2O_3 : Eu³⁺ (Y, La, Gd) Nanocrystals

Tarek Alammar, Joanna Cybinska, Paul S. Campbell, Anja-Verena Mudring

PII: S0022-2313(15)00251-3

DOI: http://dx.doi.org/10.1016/j.jlumin.2015.05.004

Reference: LUMIN13335

To appear in: Journal of Luminescence

Received date: 18 November 2014 Revised date: 20 April 2015 Accepted date: 4 May 2015

Cite this article as: Tarek Alammar, Joanna Cybinska, Paul S. Campbell and Anja-Verena Mudring, Sonochemical Synthesis of Highly Luminescent Ln₂O₃:Eu³⁺ (Y, La, Gd) Nanocrystals, *Journal of Luminescence*, http://dx.doi.org/10.1016/j.jlumin.2015.05.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Sonochemical Synthesis of Highly Luminescent Ln₂O₃:Eu³⁺ (Y, La, Gd) Nanocrystals

Tarek Alammar, Joanna Cybinska,^b Paul S. Campbell,^c and Anja-Verena Mudring^{a,*}

- a Materials Science and Engineering, Iowa State University and Critical Materials Institute, Ames Laboratory, Ames, IA, USA; mudring@iastate.edu; phone +1 515 509 5616
- b University of Wroczlaw, Faculty of Chemistry, Joliot-Curie 14, PL-50383 Wroczaw, Poland
- c The European Patent Office, Patentlaan 2, 2288 EE Rijswijk, The Netherlands

Keywords: ceramics / inorganic compounds / nanostructures / oxides / photoluminescence spectroscopy

Sonication of Ln(CH₃COO)₃·H₂O, Eu(CH₃COO)₃·H₂O and NaOH dissolved in the ionic liquid -butyl-3methylimidazolium bis(trifluoromethane)sulfonylamide lead to Ln(OH)3:Eu (Ln: Gd, La, Y) nanoparticles. Subsequent calcination at 800°C for 3h allowed to obtain Ln2O3:Eu nanopowders. Gd_2O_3 and Y_2O_3 were obtained in the C-type lanthanide sequioxide structure, whereas La2O3 crystallized in the A-type. Structure, morphology, and luminescent properties of the nano-oxides were investigated by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), dispersive X-ray (EDX), and photoluminescence (PL).

SEM studies revealed that the synthesized Gd_2O_3 :Eu, La_2O_3 :Eu, and Y_2O_3 :Eu formed nano-spindle, -sheets, and -rods in shape, respectively. The nanoscale materials show very efficient red emission due to the intraconfigurational f-f transitions of Eu^{3+} . The quantum yields for Ln_2O_3 :Eu(5%) were determined to 4.2% for Ln=Gd, 13.8% for Ln=Y and 5.2% for Ln=La. The asymmetric ratio I_{02}/I_{01} ratio of Eu^{3+} varies from 5.3 for Gd_2O_3 , to 5.6 for Y_2O_3 to 6.5 for La_2O_3 , which increased the color chromaticity.

1. Introduction:

Rare earth oxides have been widely studied because of their importance in many applications as highly luminescent materials, catalysts, magnets, medical diagnostics, and other functional materials. [1] The oxides of rare earth elements such as Y₂O₃, La₂O₃, Gd₂O₃ belong to a group of wide bandgap semiconductor materials (La₂O₃ with value of 4.3 eV possesses the largest energy gap among the rare earth oxides). [2] They can serve as very efficient host matrices for optical active lanthanide ions because they are transparent for visible and infrared radiation and they have no low energy levels that could interfere with the rare-earth activator ion level. For this reason, Y2O3, La2O3, Gd2O3 doped with Eu3+ are widely used as red-light emitting phosphors in display devices such as field emission displays (FEDs), plasma display panels (PDPs) or cathoderaytubes (CRT). Three basic structure types are known for lanthanide sesquioxides: the trigonal A-type (P-3m1) which is the most stable form for the larger and lighter rare earth elements, the monoclinic B-type (C2/m) which is found for midsized rare earth elements and the cubic C-type (Ia-3) which is adopted by the smaller, heavier lanthanide elements. [4] La₂O₃ is a representative for the A-type sesquioxides, Gd₂O₃ for the B-type, and Y₂O₃ is a C-type structure representative [5-7] The different structure types feature different lanthanide ion surroundings. In the A type, a capped octahedron of oxygen atoms surrounds the Ln^{3+} (Ln^{3+} = lanthanide) cation. In the B-type three different oxygen coordination polyhedra exist, of which one can best be described as a capped octahedron and the two others as capped trigonal prisms. The C-type features two different Ln3+ sites, each with 6-fold oxygen coordination. The different Ln³⁺ environments gives rise to different spectroscopic properties when optically active ions such as Eu³⁺ substitute Y³⁺, La³⁺ or Gd³⁺ in the respective host lattice. For the three different sesquioxides Y₂O₃, La₂O₃ and Gd₂O₃, all three crystal structures have been realized depending on the synthesis conditions, as the relative energies of the the polymorphs are relatively close.

Over the past years much effort has been made to synthesize nano-sized phosphor Ln_3O_3 : Eu^{3+} materials by a wide varierty of synthetic methods such as hydrothermal, sol-gel techniques [8,9], spray pyrolysis, [10] combustion routes using different reducing agents such as urea, glycine or citric acid, [11] or via co-precipitation processing. [12] Increasing awareness of

Download English Version:

https://daneshyari.com/en/article/5399146

Download Persian Version:

https://daneshyari.com/article/5399146

<u>Daneshyari.com</u>