ARTICLE IN PRESS

Journal of Luminescence ■ (■■■) ■■■-■■■

Contents lists available at ScienceDirect

Journal of Luminescence

journal homepage: www.elsevier.com/locate/jlumin

Spectroscopy of C_{3i} and C_2 sites of Nd^{3+} -doped Lu_2O_3 sesquioxide either as ceramics or crystal

M. Guzik^a, G. Alombert-Goget^b, Y. Guyot^b, J. Pejchal^c, A. Yoshikawa^c, A. Ito^c, T. Goto^c, G. Boulon^{b,*}

- ^a Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
- b Institute Light Matter (ILM), UMR5306 CNRS-UCB Lyon1, University of Lyon, 69622 Villeurbanne, France
- ^c Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

ARTICLE INFO

Article history: Received 30 October 2014 Received in revised form 26 December 2014 Accepted 27 December 2014

Keywords:
Laser ceramics
Nd³⁺ dopants
Lu₂O₃ sesquioxide
C_{3i}, C₂ sites
Pairs
Spectroscopic properties

ABSTRACT

 C_{3i} , C_2 sites and also pairs of Nd^{3+} in Lu_2O_3 ceramics and crystal as laser potential sesquioxides are analyzed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Actually one of our research program is dealing with the Lu₂O₃ refractory sesquioxide, which has been suggested to be a potential laser host when doped by Nd³⁺ rare earth ions since a long time, possessing the highest thermal conductivity (12.5 W/m/K) and the lowest phonon energy (391 cm⁻¹) in comparison with YAG (10.8 W/m/K and 700 cm⁻¹, respectively). However, it is extremely difficult to grow Lu₂O₃ single crystal using conventional crystal growth methods because of its high melting point (2490 °C) [1]. It is much easier to fabricate Lu₂O₃ into a ceramic structure since the sintering temperature is about 700 °C lower than its melting point, and no expensive crucible is required [2-5]. As a result, spectroscopic data of Nd3+ laser ions are needed in Lu2O3 host, either as single crystal or as ceramics. Materials we have analyzed and compared are either Nd³⁺-doped Lu₂O₃ single crystals grown by the μ-Pulling Down method [1] or Nd³⁺-doped Lu₂O₃ ceramics fabricated by the non-conventional method Spark Plasma Sintering (SPS) [5] for which we have also shown laser outputs [6]. The main goal of this article is to compare the spectroscopic data of Nd³⁺ ions occupying C3i and C2 sites of the sesquioxide structure not

http://dx.doi.org/10.1016/j.jlumin.2014.12.063 0022-2313/© 2015 Elsevier B.V. All rights reserved. only in Nd^{3+} -doped Lu_2O_3 ceramics as recently reported [5] but also in Nd^{3+} -doped Lu_2O_3 single crystals.

2. Experimental section

2.1. Materials

2.1.1. Fabrication of the Nd^{3+} -doped Lu_2O_3 ceramics by spark plasma sintering (SPS) method

Powder was put into a graphite die with an inner diameter of 10 mm and then sintered by SPS (SPS-210 LX, SPS Syntex Inc., Kawasaki, Japan) under uniaxial pressures at 20-100 MPa in a vacuum. Pulsed direct current (pulsed of 60 ms on/10 ms off) was applied during sintering. The sintering temperatures varied from 1273 K (1000 °C) to 1823 K (1550 °C) and were held for 300 s to 36 ks at a heating rate of 0.17 K/s.

The Nd^{3+} -doped Lu_2O_3 ceramics were produced from the powder mixtures in a 10-mm-diameter punch, 30-mm-diameter dies and a SPS chamber using multi-step process as follows: (1) the Lu_2O_3 material was heated up to $600\,^{\circ}\text{C}$ under the pressure of 10 MPa within 3 min, (2) it was heated up to $1100\,^{\circ}\text{C}$ with a rate of $100\,^{\circ}\text{C/min}$, (3) the temperature was hold at $1100\,^{\circ}\text{C}$ for 5 min, (4) the temperature was raised to the sintering temperature of $1450\,^{\circ}\text{C}$ with the heating rate of $10\,^{\circ}\text{C/min}$ under the pressure of

^{*} Corresponding author.

E-mail address: georges.boulon@univ-lyon1.fr (G. Boulon).

100 MPa, and (5) the temperature was kept constant for 45 min, and (6) the carbon punch and dies were cooled down. The sintered samples were mirror-polished to thickness of 1 mm. More details can be found in [7,8].

2.1.2. Growth of the $Nd^{3\,+}\text{-doped Lu}_2O_3$ crystal by $\mu\text{-pulling-down}$ technique

The un-doped and Nd³⁺-doped Lu₂O₃ single crystals have been grown by the μ -PD method [9–11]. The starting material was Lu₂O₃ powder with 99.99% purity. The growth was performed in the micro-pulling-down apparatus with radiofrequency inductive heating in rhenium crucible with circular die of 5 mm in diameter and five capillary nozzles, which was placed on rhenium after heater and zirconia pedestal. The double-layer zirconia shielding was used for thermal insulation. A mixture of Ar and H₂ gases was used as growth atmosphere. The H₂ concentration was 3%, which is sufficient to prevent rhenium from being oxidized at high temperatures. The gas flow was kept at 1 l/min. The crucible with the starting material was heated up to the Lu₂O₃ melting temperature, which is around 2400 °C. Then, the Lu₂O₃ single-crystal seed was brought into contact with the melt coming through the nozzles due to capillary action. The crystal was pulled at a pulling rate of 0.09 mm/min.

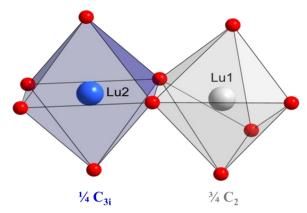
2.2. Spectroscopic characterization

2.2.1. Absorption measurements

Absorption spectra in the 200–2500 nm spectral range were recorded at 4 K and 293 K with a Cary-Varian 5000 Scan spectrometer equipped with an Oxford CF 1204 helium flow cryostat.

2.2.2. Emission measurements

The emission measurements of C_2 and C_{3i} sites at room temperature and 77 K were recorded under selective laser excitation using a CW titanium sapphire laser with the help of an IR Hamamatsu CCD camera and a 900 l/mm grating blazed at 1300 nm.


3. Results

3.1. Structure of sesquioxides and effect of Nd³⁺ dopant

The well-known structure of cubic Ln_2O_3 (Ln=Y, Lu, Sc) sesquioxides belongs to the bixbyite type [$^{VI}A_2$] [$^{IV}O_3$], which is body-centered cubic, space group $Ia\bar{3}$ with Z=16. The cubic lattice parameter is 10.391 Å. This type of structure offers two available independent cations sites for the Lu^{3+} atoms with local symmetries C_2 (non-centrosymmetric) and C_{3i} (centrosymmetric), each of them with 6-fold coordination as is shown in Fig. 1. The ratio of C_2 to C_{3i} is 3:1, that is, 32 cations in a unit cell in which 24 occupy C_2 sites and 8 occupy C_{3i} sites. The O^{2-} anions occupy the 48 general positions. The X-ray single crystal structure determination of Lu_2O_3 sesquioxide and of polycrystalline transparent ceramic fabricated by the unconventional spark plasma sintering (SPS) method was reported in [1].

Due to the small difference of ionic radii, trivalent Nd^{3+} (0.983 Å) dopant ions can substitute Lu^{3+} (0.861 Å) ions of the same valency, with slight distortions in the crystal field.

The distribution of the nearest neighbor cations around each C_2 and C_{3i} sites create several possibilities of Nd^{3+} pairs. Table 1 shows the smallest distances between both the C_2 nearest neighbors and the C_{3i} nearest neighbors for Y_2O_3 [12]. Clearly, we assume comparable values for Lu_2O_3 . Direct spectra of pairs are experimentally observed only by doping with Yb^{3+} ions characterized by the simplest energy level diagram but not with Nd^{3+} ones having too many energy levels in the UV and visible ranges avoiding any

Fig. 1. C_{3i} and C_2 sites of the sesquioxide structure with the occupation ratio of $\frac{1}{4}$ and $\frac{3}{4}$ respectively.

Table 1 Distribution of expected Nd^{3+} (or Yb^{3+}) nearest neighbors of C_2 (3/4) and C_{3i} (1/4) site symmetries in Y_2O_3 [12].

	Numbers of sites	Distances in Å
C ₂ -C ₂	4	3.54
	4	4.01
	2	5.30
	4	5.34
C_2 - C_{3i}	2	3.52
	2	3.99
C_{3i} - C_2	6	3.52
	6	3.99
C_{3i} - C_{3i}	6	5.3

Table 2Next neighbor cationic distances of Yb³⁺ pairs in some crystals as detected by cooperative luminescence.

Crystals	Symmetry	Cationic distances of Yb ³⁺ pairs	References
Y ₂ O ₃	Cubic (C ₂ and C _{3i} symmetry sites)	C_2 - C_2 =3.54 Å and 4.01 Å	[14]
YAG	Cubic $(Y^{3+}:D_2)$	3.67 Å	[15]
GGG	Cubic (Gd ³⁺ :D ₂)	3.78 Å	[16-17]
BaY_2F_8	Monoclinic	3.70 Å	[18]
LiYF ₄	Tetragonal	3.72 Å	[19]
CaF_2	Cubic	3.84 Å	[20]
KY_3F_{10}	Cubic	3.08 Å	[21]

evidence of cooperative luminescence. At around 500 nm we have observed the cooperative luminescence spectra of Yb^{3+} ions in crystals mentioned in Table 2, when the shortest distances between rare earth cations are less than around 4 Å.

The same effect, which should be inferred with Nd^{3+} ions in Lu_2O_3 has been detected by the presence of satellite lines in the foot of the Nd^{3+} 0-phonon absorption lines. Indeed, the creation of Nd^{3+} pairs leads to shifts of absorption lines from isolated Nd^{3+} ions lines mainly due to the different configurations of sites as indicated in Table 2, each individual ensemble producing a distinct crystal field perturbation. These perturbations modify the energy level schemes with respect to those of the unperturbed centers, leading to structures of spectral satellites [12,13]. In the next section the Nd^{3+} -doped Lu_2O_3 ceramics and crystals show quite well-resolved spectral satellites for all the main Nd^{3+} 0-phonon absorption lines with energy shift from the isolated ion lines up to 10 cm^{-1} .

Download English Version:

https://daneshyari.com/en/article/5399149

Download Persian Version:

https://daneshyari.com/article/5399149

Daneshyari.com