FI SEVIER

Contents lists available at ScienceDirect

Journal of Luminescence

journal homepage: www.elsevier.com/locate/jlumin

A simple and highly selective 'turn-on' type fluorescence chemodosimeter for Hg²⁺ based on 1-(2-phenyl-2H-[1,2,3]triazole-4-carbonyl)thiosemicarbazide

Hui Lin, Wei Shi*, Yong Tian, Fudong Ma, Linxian Xu, Junchi Ma, Yonghai Hui, Zhengfeng Xie*

Key Laboratory of Petroleum and Gas Fine Chemicals, Educational Ministry of China, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, PR China

ARTICLE INFO

Article history:
Received 23 June 2014
Received in revised form
29 August 2014
Accepted 2 September 2014
Available online 16 September 2014

Keywords: Fluorescence chemodosimeter Thiosemicarbazide Hg²⁺ probing

ABSTRACT

1-(2-phenyl-2H-[1,2,3]triazole-4-carbonyl)-4-(4-methylphenyl)thiosemicarbazide (**M1**) has been synthesized and investigated as a fluorescence chemodosimeter for Hg^{2+} in dimethylsulfoxide. Highly selective 'turn-on' fluorescence alterations of **M1** were observed upon the addition of Hg^{2+} . Detection limit of Hg^{2+} by **M1** reaches $\sim 3.7 \times 10^{-8}$ mol/L (evaluated by 3σ criteria).The coexistent metal ions rendered no obvious interference toward the optical response of **M1** for Hg^{2+} . The mechanism of **M1** for the recognition of Hg^{2+} has been investigated by FT-IR, H NMR and MS analyses.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Over the past few years, molecular chemodosimeters for sensing metal cations have been extensively investigated due to their wide application in environmental science, medicine, chemistry, biotechnology, etc. [1-10]. Among these metal cations, Hg^{2+} is one of the most toxic ions [11], and can be accumulated over time in the bodies of human and animals, introducing serious damage to the brain, kidneys and endocrine system [12-14]. Exploring methods for the efficient detection of Hg^{2+} is attracting huge attention [15-18]. Thus, several traditional methods including atomic absorption spectroscopy, inductively coupled plasma atomic emission spectrometry, and electrochemical workstation have been utilized to realize the detection of Hg²⁺ [19]. However, these traditional methods require expensive equipments and involve time-consuming and laborious procedures for samplepreparation [20]. Alternatively, analytical techniques based on fluorescence detection have drawn more and more attention due to the advantages of simple detection procedures, high sensitivity, and with no requirement of expensive equipments [21-23]. Two types of representative detection manners have been previously reported for the fluorescence detection of Hg^{2+} , referred as fluorescence 'turn-off' (fluorescence quenching) and 'turn-on' (fluorescence enhancing). Fluorescence 'turn-on' detection is much more preferable than the quenching mechanism due to the ease of detection (signals were strengthened during the detection process) and with less interference [24–28]. Preparation of fluorescence 'turn-on' type Hg²⁺ probes by simple synthetic route has drawn increasing interest in recent years [29–31].

Thanks to the specific interaction between Hg^{2+} and S atom, considerable efforts have been devoted to develop methods for Hg^{2+} probing by taking advantage of sulfur-containing derivatives [32–34]. These methods employ desulfurization or subsequent transformation reactions of thioamide [35], thiourea [36–40] and thione [41–44] containing optical-functionalized compounds. For example, Lin et al. designed colorimetric chemosensors for Hg^{2+} with high sensitivity in aqueous solutions [45]. Liu et al. reported a fluorescence chemodosimeter based on Hg(II)-promoted intramolecular cyclic guanylation [46]. Song et al. developed a fluorescent fluorogenic Hg^{2+} -selective chemodosimeter derived from 8-hydroxyquinoline [47].

In this context, we have designed a type of hydrazide-thio-carbonyl small molecular fluorescence chemodosimeter (**M1**). Optical response of **M1** toward various metal ions was investigated in this effort. With the addition of Hg²⁺, thanks to the Hg²⁺-induced desulfurization and the further intermolecular cyclization, the irreversible and unique fluorescence enhancement of **M1** was observed, indicating that **M1** hold the potential to act as Hg²⁺ fluorescence probe.

^{*} Corresponding authors. Tel.: +86 991 8588368; fax: +86 991 8582807. E-mail addresses: xjuwshi@gmail.com (W. Shi), xiezhf72@gmail.com (Z. Xie).

2. Experimental section

2.1. Measurements and characterization

¹H NMR spectra were collected on a VARIAN INOVA-400 spectrometer operating at 400 MHz in deuterated DMSO solution

with tetramethylsilane as the internal standard; IR spectra were recorded on an EQUINOX 55 FT-IR spectrometer with KBr pellets; UV-visible absorption spectra were recorded on a SHIMADZU RF-5301pc spectrophotometer UV-2450 UV-vis spectrophotometer. Fluorescence spectra were recorded on spectrophotometer.

Scheme 1. Synthesis and structures of M1.

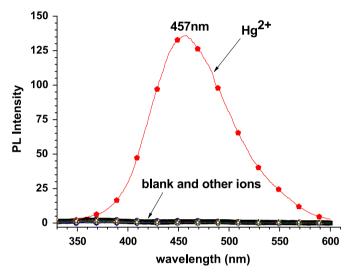
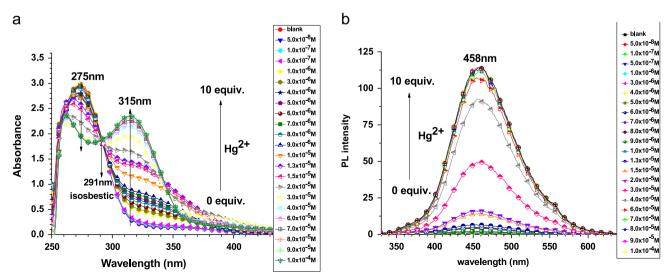



Fig. 1. Fluorescence spectra of M1 (\sim 1.0 \times 10⁻⁵ M) in DMSO with the addition of Ag⁺, Al³⁺, Ba²⁺, Ca²⁺, Cd²⁺, Cd²⁺, Cu²⁺, Mg²⁺, Na⁺, Ni²⁺, Pb²⁺, Zn²⁺ and Hg²⁺ (17 equiv, excitation wavelength was controlled at 275 nm).

Fig. 2. Visual photographs of M1 (\sim 1.0 \times 10⁻⁵ M) in DMSO with the presence of 17 equiv. of different cations (excited by 365 nm, provided by a portable UV lamp).

Fig. 3. (a) Absorption spectra of **M1** ($\sim 1.0 \times 10^{-5}$ M) in DMSO in the presence of increasing concentration of Hg²⁺ (0–10 equiv.). (b) Fluorescence emission spectra (excitation at 275 nm) of **M1**($\sim 1.0 \times 10^{-5}$ M) in DMSO in the presence of various concentrations of Hg²⁺ (0–10 equiv.). Inset: the fluorescent at 457 nm of **M1** ($\sim 1.0 \times 10^{-5}$ M) as a function of Hg²⁺ concentrations (0–10 equiv.).

Download English Version:

https://daneshyari.com/en/article/5399509

Download Persian Version:

https://daneshyari.com/article/5399509

<u>Daneshyari.com</u>