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a b s t r a c t

Most mechanical vibrations in our environment can be classified as noisy vibrations, since they have no
preferred frequency and a spectrum that spreads to the low frequency range. Bistable systems have
shown to be a solution to the existing frequency mismatch between the energy source and the harvester
device. In this work a parametric study is carried out in order to show the dependence of these improve-
ments with the quality factor Q of a vibrating beam and the different responses when driven by different
types of model noise. Specifically, we studied Colored Gaussian Noise instead of the much more common
White Gaussian Noise, considered as a reference in most studies.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Mechanical vibration harvesters are mostly based on resonators
capable of transducing the energy from the mechanical to the elec-
trical domain through piezoelectric, electromagnetic or capacitive
strategies [1]. The need to deal with low intensity vibrations makes
the use of MEMS/NEMS suitable in order to improve the response
of the device in terms of the ratio between input and output power.
The reduction of the dimensions of such a resonator increases dra-
matically their resonant frequency [2,3]. This feature and the typ-
ical frequency selectivity of these devices make them not optimal
to harvest energy from broad band noises, particularly when it ex-
tends to the low frequency range.

2. Modeling

In order to address the problems described above we propose a
bistable device based on a suspended graphene nanoribbon: bista-
bility has been demonstrated to improve the response in compar-
ison with that of resonators when driven by noise [4]. The
bistability is achieved by applying compression as it is shown in
Fig. 1. Once the compression is applied the resonating behavior is
broken and two new attractors appear symmetrically positioned
with respect to the initial stable point (x = 0). The description of
the graphene nanoribbon is done through the determination of
the elastic potential energy through ab initio calculations as it is ex-
plained in [5]. Fig. 2 shows different potential energy curves that

highlight the role of the compressive strain, i.e. the larger the com-
pression, the larger the separation of the two attractors and the
higher the barrier are. The inset shows the dependence of the bar-
rier height and the minima position with the compression, which is
the non-linearizing parameter. It is worth noting the strong non-
harmonic shape the uncompressed case shows. Therefore, even
when the system is not strained it shows a non-resonating
behavior.

In this work we extend our previous report [5] by studying the
response to different types of noise. Specifically, we start with a
White Gaussian Noise (WGN) and then filter it to selectively elim-
inate the contributions of certain frequency range, as discussed be-
low. Additionally, we focus on the dependence of the performances
of the harvesting device on the quality factor Q, which is a highly
variable parameter and might vary significantly from realization
to realization of the device.

3. Simulation and results

To characterize the dynamics of this kind of system a Langevine
differential equation of motion must be solved numerically:

meff � x00 ¼ �dEp=dx� b � x0 þ FnðtÞ ð1Þ

where meff stands for the effective mass as it is defined in the frame
of the spring-mass model [6] and x, x0 and x00 are the position vector
and its first and second time derivatives, respectively. The constant
b accounts for the losses in the system which we assume to be dom-
inated by friction processes, and can be expressed in terms of the
quality factor as follows:

b ¼ meff �x0=Q ð2Þ
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Fn describes the force suffered by the oscillator when it is driven by
a mechanical vibration and it will have a root mean square value of
2.2 pN from now on, which corresponds to a sound pressure of
approximately 200 dB.

In order to describe the dynamics of the system we considered a
WGN excitation. Although real vibrations are better approximated
by a colored noise, we first analyze this reference case due to its
relevance to previous literature. Fig. 3 shows the dynamics in
terms of trajectory and phase portrait. Three different working re-
gimes, corresponding to different compression values, are dis-
played. For a non-stressed graphene system the dynamics is that
of a resonator with a single attractor i.e. it oscillates around x = 0.
For larger values of e the trajectory shows oscillations around just
one of the two wells. However, at intermediate compressions the
system can suffer transitions from one attractor to the other, then
increasing the root mean square of the position vector as it is
shown in Fig. 4. The increase of xrms is understood as an improve-
ment with respect to the non-stressed case and it is very closely re-
lated to the capability of generating electric power when allowing
the transduction [4]. In order to compute the generated power, a
piezoelectric method of transduction is considered, as previously
proposed in [5]. Fig. 4 shows a shift of the peak towards smaller
compression values between the xrms computed when no transduc-

tion is considered and when it is. It can be easily understood in
terms of available energy: during transduction some of the energy
is extracted, thus leaving less energy to overcome the potential
barrier. Notice that there is also a difference between the optimal
compression for the xrms and this for the Prms. Under certain condi-
tions there can be an absolute match [7], though these cannot be
applied in our particular case due to the very high time constant
s = RC of the electromechanical system [5].

Fig. 1. (a) Scheme of the structure showing the two clamped ends and the arm-
chair configuration along the longitudinal axis it has been considered. (b)
Illustration of the compression applied in the arm-chair direction in order to
produce the bistability. The x-coordinate is shown and it is considered as the only
displacement direction of the mechanical system in the dynamical regime.
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Fig. 2. Elastic potential energy for three different compressions starting from the
non-stressed configuration. The inset shows the dependence of the well position
and the potential barrier height between minima with the compression:
x± = 8.64

p
e Å; DV = 0.05 e2aJ.
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Fig. 3. Displacement vs time and phase portrait for the three different regimes: (a)
non compressed case. The system oscillates around the attractor positioned at x = 0.
(b) Medium compression applied. The excitation makes the system to cross from
one well to the other. (c) Large compression. The system gets stuck in one of the two
minima.
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Fig. 4. Root mean square of the displacement x and the generated electric power as
a function of the applied compression.
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