Contents lists available at ScienceDirect







journal homepage: www.elsevier.com/locate/jlumin

# Peculiarities of the $Ho^{3+} \rightarrow Yb^{3+}$ energy transfer in $CaSc_2O_4$ :Ho:Yb



Serban Georgescu<sup>a</sup>, Angela Stefan<sup>a,b</sup>, Ana-Maria Voiculescu<sup>a</sup>, Octavian Toma<sup>a,\*</sup>, Cristina Matei<sup>a,b</sup>, Ruxandra Birjega<sup>a</sup>

<sup>a</sup> National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele-Ilfov, Romania <sup>b</sup> University of Bucharest, Faculty of Physics, 405 Atomistilor Street, 077125 Magurele-Ilfov, Romania

#### ARTICLE INFO

## ABSTRACT

Article history: Received 31 January 2014 Received in revised form 14 April 2014 Accepted 17 April 2014 Available online 24 April 2014

Keywords: CaSc<sub>2</sub>O<sub>4</sub> Ho<sup>3+</sup> Yb<sup>3+</sup> Energy transfer Downconversion

#### 1. Introduction

 $CaSc_2O_4$  is a promising host for efficient upconversion/downconversion ([1] and references therein) due to low energy phonons (540 cm<sup>-1</sup> [2]), short distances between positions that can be occupied by the dopants and high solubility of ytterbium ions. Efficient visible upconversion luminescence was obtained in  $CaSc_2O_4$  codoped with  $Er^{3+}$  and  $Yb^{3+}$  [3],  $Tm^{3+}$  and  $Yb^{3+}$  [1], and with  $Ho^{3+}$  and  $Yb^{3+}$  [4]. Recently, cooperative down-conversion and near infrared luminescence were obtained in  $CaSc_2O_4$  doped with  $Tm^{3+}$  and  $Yb^{3+}$  [5].

CaSc<sub>2</sub>O<sub>4</sub> has the CaFe<sub>2</sub>O<sub>4</sub> structure, space group Pnam (D<sub>2</sub><sup>16</sup>) [6]. Sc<sup>3+</sup> ions occupy two octahedral positions while Ca<sup>2+</sup> ions occupy an eight fold coordinated position [6]. The Yb<sup>3+</sup> ions (ionic radius 0.868 Å) substitute isovalently the Sc<sup>3+</sup> ions (ionic radius 0.75 Å) [6]. Ions with a larger ionic radius—like Eu<sup>3+</sup> (1.07 Å)—substitute Ca<sup>2+</sup> (1.12 Å) [7]. According to Ref. [2], both Yb<sup>3+</sup> and Tm<sup>3+</sup> substitute Sc<sup>3+</sup>. Ho<sup>3+</sup>, despite having an ionic radius 0.901 Å in six fold coordination [8], is also considered to replace Sc<sup>3+</sup> in CaSc<sub>2</sub>O<sub>4</sub> [4]. The unit cell parameters are *a*=9.461 Å, *b*=11.122 Å, and *c*=3.143 Å [6]. The two octahedral Sc<sup>3+</sup> positions differ by the scandium–oxygen distances: 2.1195 Å and 2.1171 Å for the mean Sc<sup>3+</sup> – O<sup>2-</sup> distance [6]. These distances are shorter than the mean Sc<sup>3+</sup> – O<sup>2-</sup> distance in Sc<sub>2</sub>O<sub>3</sub>, C<sub>2</sub> symmetry site (2.121 Å [9]).

We study the effect of the energy transfer processes between  $Ho^{3+}$  and  $Yb^{3+}$  in  $CaSc_2O_4$  on the emission properties in visible and IR of  $Ho^{3+}$  and  $Yb^{3+}$ . The decays of the  $Ho^{3+}$  levels ( ${}^5S_2$ ,  ${}^5F_4$ ) and  ${}^5I_6$  for various  $Yb^{3+}$  concentrations are measured. We show that, for pumping in  ${}^5F_3$  (at 488 nm), the total number of photons emitted by  $Ho^{3+}$  and  $Yb^{3+}$  in the wavelength domain 500–1600 nm is augmented by the presence of  $Yb^{3+}$ . We estimate a 30% increase of the overall quantum efficiency of  $CaSc_2O_4$ :Ho:Yb, due to the presence of  $Yb^{3+}$ .

© 2014 Elsevier B.V. All rights reserved.

In this paper, we investigate the Ho<sup>3+</sup>  $\leftrightarrow$  Yb<sup>3+</sup> energy transfer processes at various Yb<sup>3+</sup> concentrations (up to 10 at%) in CaSc<sub>2</sub>O<sub>4</sub>:Ho (1 at%):Yb and the effect of the presence of Yb<sup>3+</sup> on the total number of photons (visible and infrared) emitted. In the first part, we analyze the effects of the various Ho<sup>3+</sup>  $\leftrightarrow$  Yb<sup>3+</sup> energy transfer processes on the kinetics of the Ho<sup>3+</sup> metastable levels (<sup>5</sup>S<sub>2</sub>, <sup>5</sup>F<sub>4</sub>) and <sup>5</sup>I<sub>6</sub>. In the second part, the effects of the energy transfer processes on the luminescence spectra are considered and the dependence of the total number of emitted photons vs. Yb<sup>3+</sup> concentration is estimated. The impact of the ytterbium codoping on the quantum efficiency of the CaSc<sub>2</sub>O<sub>4</sub>:Yb:Ho system is also studied.

### 2. Experimental

The CaSc<sub>2</sub>O<sub>4</sub> ceramic samples doped with holmium (1 at%) and ytterbium (atomic concentrations 0%, 1%, 2%, 3%, 5%, 8% and 10%) were synthesized by a solid-state reaction. The compositions of the samples were calculated, as in Ref. [4], considering that Ho<sup>3+</sup> ions enter the Sc<sup>3+</sup> positions. High purity CaCO<sub>3</sub> and Sc<sub>2</sub>O<sub>3</sub> powders were mixed in an agate mortar, pressed with a hydraulic press at 10 MPa and then annealed in air at 1500 °C for 4 h. Before weighting the powders, attention was paid to remove the moisture from CaCO<sub>3</sub>. As a result of the thermal treatment, a solid, ceramic sample was obtained. The sample was cut and washed in an ultrasonic bath to remove the abrasive particles. The X-ray diffraction was measured with the PANalytical X'Pert PRO MPD

<sup>\*</sup> Corresponding author. Tel.: +40 214574550. E-mail address: octavian.toma@inflpr.ro (O. Toma).

diffractometer (Cu,  $K\alpha$ ). The luminescence of the samples was excited in blue (at 488 nm), with the Argon laser (Melles Griot, 35LAP431-230). The experimental set-up for luminescence measurements in UV-vis domain contains a Horiba Jobin-Yvon monochromator (model 1000M Series II), an S-20 photomultiplier and the SR830 lock-in amplifier on line with a computer. For IR luminescence, the Horiba Jobin-Yvon monochromator was replaced by a 1m Jarrell Ash monochromator and a thermoelectrically cooled InGaAs pin photodiode (Hamamatsu G5851-23) was used. The fact that the CaSc<sub>2</sub>O<sub>4</sub> pellets were not opaque enabled us to measure the absorption spectra. For decay measurements, the luminescence was excited in green, with the second harmonics of a pulsed Nd:YAG laser and analyzed with the Tektronix 2024B oscilloscope. For the decay of the  ${}^{5}I_{6}$  level (at  $\sim 1200$  nm) a germanium detector (Judson J16D) was used. The absorption and emission spectra of Yb<sup>3+</sup> were measured in a diluted (KBr dilution technique) CaSc<sub>2</sub>O<sub>4</sub>:Yb (5 at%) sample. The Yb<sup>3+ 2</sup>F<sub>5/2</sub> and Ho<sup>3+</sup> <sup>5</sup>F<sub>5</sub> levels' luminescence was excited with an OPO (Quantel Rainbow NIRD) at 900 nm and at 625 nm, respectively. All the measurements were performed at room temperature.

#### 3. Results and discussion

The existence of  $CaSc_2O_4$  (card PDF-00-020-0234) phase was confirmed by XRD measurements for all the samples used in this study; no extra phases were observed. As an illustration, Fig. 1 shows the XRD pattern of a sample doped with 1 at% holmium and 5 at% ytterbium.

The absorption spectra of  $Ho^{3+}$  in  $CaSc_2O_4$ :Ho (1%) in the UVvis (350–700 nm) and IR (700–1300 nm) domains are given in Figs. 2 and 3. The luminescence spectra, excited with the Argon



Fig. 1. XRD pattern of  $CaSc_2O_4$ :Ho (1%):Yb (5%). The diffraction lines correspond to PDF-00-020-0234 card.



Fig. 2. UV–vis absorption spectrum of  ${\rm Ho^{3+}}$  in  ${\rm CaSc_2O_4:Ho}$  (1%). The absorption transitions are identified.



**Fig. 3.** IR absorption spectrum of Ho<sup>3+</sup> in CaSc<sub>2</sub>O<sub>4</sub>:Ho (1%).



**Fig. 4.** Luminescence spectrum of Ho<sup>3+</sup> and Yb<sup>3+</sup> in CaSc<sub>2</sub>O<sub>4</sub>:Ho (1%):Yb (*x*%) excited at 488 nm (pump transition  ${}^{5}I_8 \rightarrow {}^{5}F_3$ ). (a) x=0; (b) x=5, and (c) x=10.



**Fig. 5.** Energy level scheme of Ho<sup>3+</sup> and Yb<sup>3+</sup> in CaSc<sub>2</sub>O<sub>4</sub>. CR: cross-relaxation process ( ${}^{5}S_{2}$ ,  ${}^{5}F_{4}$ ;  ${}^{5}I_{8}$ ) $\rightarrow$ ( ${}^{5}I_{4}$ ;  ${}^{5}I_{7}$ ). ET1, ET2, ET4: energy transfer processes Ho<sup>3+</sup> $\rightarrow$  Yb<sup>3+</sup>. ET3: energy transfer Yb<sup>3+</sup> $\rightarrow$ Ho<sup>3+</sup>. The Ho<sup>3+</sup> levels ( ${}^{5}S_{2}$ ,  ${}^{5}F_{4}$ ) are excited at 532 nm and  ${}^{5}F_{3}$  at 488 nm. Gray lines: hypothetical cooperative down-conversion process ( ${}^{5}F_{3}$ ; 2  ${}^{2}F_{7/2}$ ) $\rightarrow$ ( ${}^{5}I_{8}$ , 2  ${}^{2}F_{5/2}$ ).

laser (at 488 nm, absorption transition  ${}^{5}I_{8} \rightarrow {}^{5}F_{3}$ ), for three Yb<sup>3+</sup> concentrations (0 at%, 5 at%, and 10 at%) are shown in Fig. 4. As the result of the energy transfer processes involving Yb<sup>3+</sup>, the intensity of the emission lines originating in  ${}^{5}S_{2}$ ,  ${}^{5}F_{4}$  (at 550 nm, 760 nm, 1020 nm, and 1400 nm) diminishes while the intensity of the  ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$  emission line (at ~ 1200 nm) increases. Due to the experimental limitations (the sensitivity domain of the InGaAs detector is limited to ~ 1600 nm), we cannot observe the  ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ 

Download English Version:

# https://daneshyari.com/en/article/5399755

Download Persian Version:

https://daneshyari.com/article/5399755

Daneshyari.com