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a b s t r a c t

In nanoparticles (NPs) static quenching of luminescence may be slower than in bulk media due to the
space restrictions on acceptor location. Many-body cooperative quenching (manifesting itself as, e.g.,
down-conversion) occurs when the donor energy is transferred to two-, three-, or more particles
(a cooperative acceptor) at once. Random distribution of acceptor particles in diluted media accounts for
the non-exponential form of the kinetics. When the analytical expression for the kinetics form is known,
it can be fitted to the experiment in order to find various micro- and macro-quenching parameters of the
luminescent material. In this paper, we present an analytical law for cooperative quenching kinetics in
NPs at longer time. Its clear and compact form reflects the fact that, on average, donors located on the
surface of NPs are the last to decay having acceptors on one side only. We compared the resulting
formula with the Monte-Carlo computer simulation, and they show good agreement.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the literature, nanostructures of various forms are consid-
ered promising for a wide range of applications in physics, biology,
and medicine. These include polymer coils in solutions [1],
photonic crystals [2], porous glasses [3,4], and nanoparticles [5].
As the popularity of nanomaterials grows, the theoretical study of
their properties becomes vital. We are particularly interested in
luminescence quenching kinetics, as its form may be used to
define all types of micro- and macro-parameters associated with
the media and energy transfer, such as the minimal donor–
acceptor distance R0, type S and microefficiency CDA of multipole
donor–acceptor interaction; see Refs. [6–8]. If energy acceptors are
located only within NPs, then the probability of irradiative energy
transfer (luminescence quenching) may decrease, and the lumi-
nescence quantum yield may increase, in comparison with bulk
media, simply because for some (surface) donors there are less
acceptors around. In Ref. [9] authors have shown (both theoreti-
cally and by computer simulation) that luminescence quenching in
NPs can be slower than in bulk, the more so the smaller the NPs.
Very recently, this was confirmed experimentally [10]. Apart from
the regular case of luminescence quenching when a donor
transfers energy to a single acceptor particle, in this work we are
interested in a cooperative energy transfer when the donor energy

gap is equal to twice (or, generally, n times) the energy gap of the
acceptor particle. For rare-earth (RE) ions, this cooperative energy
transfer (Nd-2Ce, Tm-2Ce, Tb-2Yb, and Er-3Ce) was experi-
mentally shown to be the dominant quenching process [11–13].
Usage of quantum cutting for solar batteries (conversion of one
visible photon into two or three photons with a few times longer
wavelength) is one modern example of perspective application of
cooperative energy transfer [14]. The down-conversion is a much
more efficient process than the up-conversion (see Refs. [15,16] for
pioneering experiments). Roughly speaking, the probability of up-
conversion is proportional to the number of possible excited
donors, while the probability of down-conversion is proportional
to the number of possible pairs of acceptor particles, which is one
or two orders of magnitude greater. In this paper we study only
the case of cooperative energy transfer from donors to many-
particle acceptors but not the opposite.

We started our study of cooperative energy transfer by con-
sidering the quenching in bulk media when the donor energy
approximately doubles the acceptor energy [17]. In work [18], we
generalized the analytical solution for the long-time-stage kinetics
of donor excitation energy transfer in an ensemble of acceptors,
each consisting of randomly distributed two, three, or n particles
(nþ1 body interaction): InðtÞ ¼ exp½�ðWtÞ1=ðnS=d�nþ1Þ�. We used a
continuum approximation and showed that the expression works
well for a small acceptor particle concentration. The time power in
the exponent has interesting dependence on the interaction
multipolarity S and the space dimension d. The average quenching
rate W�cnS/d depends on the acceptor particle concentration c to
the power nS/d, which is similar to the classical Forster case (cS/d),
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but has a factor n—the number of particles comprising a coopera-
tive acceptor. In this paper, we address the question of how the
kinetics of static cooperative luminescence quenching changes by
moving from bulk material to NPs.

1.1. Mathematical model

Recently, we investigated the problem of static quenching in
NPs for the case of energy transfer from a donor to one-particle
acceptors [9,19]. A donor located near the surface of an NP cannot
be surrounded by acceptors from all sides (we assume that
acceptors are located only within NPs), so it has a smaller
probability to decay than a donor in the bulk media with the
same acceptor concentration. The expression for luminescence
quenching contains two terms: the first one is similar to the
formula for quenching in bulk material, and the second one
describes the quenching of surface donors (roughly, with a twice
smaller rate).

We consider the effect of restricted geometry factor, exclu-
sively. We do not take into account surface distortions, NPs size
difference, presence of outer quenchers (like OH ions), spectral
shifts in nanostructured media in relation to bulk, etc. To under-
stand the complex kinetics, it is reasonable to start by studying the
influence of each factor separately. In this, computer simulation is
indispensable. While the extra, unwanted, factors are hard to
eliminate in real experiment, computer simulation of quenching
can be as pure numerical experiment as we wish.

In this work, we present the expression for static quenching
kinetics in spherical NPs in the case of cooperative energy transfer
from a donor to n-particle acceptors. We assume the acceptor ions
with the small concentration cA«1 to be uniformly distributed in
the volume of NPs. In addition, the donor excitation density is
taken to be small, so that we can neglect the donor-to-donor
excitation migration and the donors do not compete for the
acceptor ions. In the computer simulation we have put exactly
one excited donor in one NP, at a random position. The number of
acceptor ions in one NP has a Gaussian distribution around the
mean, which equals the number of available positions (lattice
sites) multiplied by concentration (we define the concentration cA
as the probability of a certain position to be occupied by an
acceptor particle).

Below we present a sketch of the derivation for the three-
dimensional (d¼3) case of cooperative quenching to two-particle
acceptors (n¼2). At the same time, we will use the symbols d and
n in the notations below in order to exploit these same notations
in a more general case.

1.2. Derivation of the long-time asymptotics

The probability of elementary act of energy transfer from a
donor to a certain pair of acceptor particles, located at the
distances ri and rj from the donor, is Wij¼CDA/(rSi r

S
j ), where CDA is

the microparameter of cooperative energy transfer efficiency. Note
that dimensionality of CDA for cooperative energy transfer is
different from that of energy transfer to one-particle acceptors.

We shall use the same approach as in Refs. [19,20]. In a crystal
NP, let us number all the positions available for acceptor particles.
Intensity of luminescence normalized by the maximum value I0 at
time t¼0 (we assume instantaneous excitation) can be written in
the form:

IðtÞ ¼ ∏
io j

½1þpipjðexpð�WijtÞ�1Þ�
* +

: ð1Þ

Here pi is 1 if the position i is occupied by an acceptor particle,
and 0 otherwise. We consider the distribution of acceptor particles

to be uniform

〈pi〉¼ cA; 〈pipj〉¼
〈p2i 〉¼ 〈pi〉¼ cA; i¼ j

〈pi〉〈pk〉¼ c2A; ia j

( )
: ð2Þ

Averaging, denoted in the expressions above and below by
angle brackets, of the product in Eq. (1) is the hardest problem of
the theoretical treatment of the problem. In this work we use the
same approximation as we did before in Refs. [17,18]

IðtÞ ¼ ∏
1o j

½1þp1pjðexpð�W1jtÞ�1Þ�
* +

∏
2o j

½1þp2pjðexpð�W2jtÞ�1Þ�
* +

⋯

ð3Þ
This approximation is the roughest one in the present paper

and can be justified only for small acceptor concentrations. The
problem is that in Eq. (3) some of pis are treated as independent,
while they are not, in fact, independent. As a result, I(t) as
described by Eq. (3) may go down faster than actual luminescence.
We also need the condition of small acceptor concentration to
exploit the continuum approximation in what follows.

A standard procedure to deal with the terms of Eq. (3) of the
form oΠ(1þp1pj(exp(�W1jt)�1))4 is to transform them into
oexp∑ln(1þp1pj(exp(�W1jt)�1))4 , as it is easier to work with
sum rather than product. The expectation of the latter value will
be cAexp∑ln(1þp1(exp(�W1jt)�1))þ(1�cA). Now we exploit the
concerning approximation of the partial independence of pis and
represent the product of similar expressions as exp∑ln(cAexp∑ln
(1þcA(exp(�Wijt)�1))þ(1�cA)), where the first summation is
over index i and the second summation is over index j4 i.

In the continuum approximation we replace summation over
lattice sites by integration over volume of a nanoparticle. Integra-
tion variables are the distances of the acceptor particles to the
donor, on a condition that an acceptor particle is located within
the NP. Therefore, for small donor–acceptor distances, we inte-
grate over full 4π space angle, while for greater donor–acceptor
distance (or, more importantly, for configurations where the donor
is close to the NP surface) the quenching sphere will be located
partially outside of the NP; hence a more complex term for space
angle is used below.

Let all the NPs be of one size with the radius R. First, we shall
write down an expression with respect to the donors located at
the certain distance rD from the center of an NP, and then we shall
average the resulting expression over all rD: 0rrDrR. We present
the luminescence intensity as

IðrD; tÞ ¼ expf� f ðrDÞg; ð4Þ
where the function f(rD) is

f ðrD; tÞ ¼
NA

V

Z R� rD

R0

4πr21dr1 1�exp
NA

V

Z R� rD

r1
�CDAt
rS1r

S
2

4πr22dr2

(" 

þ
Z Rþ rD

R� rD
�CDAt
rS1r

S
2

2πr22Ωðr2; rDÞdr2
)#!

þNA

V

Z Rþ rD

R� rD
2πr21Ωðr1; rDÞdr1 1�exp
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V

Z Rþ rD

r1

���

�CDAt
rS1r

S
2

2πr22Ωðr2; rDÞdr2
)#!

; ð5Þ

where NA¼cAN is the average number of acceptor particles in the
unit space V, N is the number of positions available for acceptors in
the unit space, and the space angle is

Ωðri; rDÞ ¼ 1þR2�r2D�r2i
2rDri

: ð6Þ

The case of rD¼R reflects the situation when the donors
deposited on the surface of an NP decay with the help of the
cooperative acceptors located in the whole volume of an NP. Then,
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