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Abstract

In the modern photolithography simulation, the computation demand on resolution enhancement techniques (RETs) and optical
proximity corrections (OPCs) is proportional to the simulation runtime of the model, which is dependant on the number of the kernels
retained with the constrain of the model accuracy. Thus, it is essential to retain as few kernels as possible in the model calibration. Tra-
ditionally, the kernels are retained based upon their contribution to the aerial image, which is solely determined by the magnitudes of the
eigenvalues. This method works well for arbitrary photolithography masks. However, real masks are never arbitrary and random.
Instead, they have regular shapes and arrangements as governed by design rules, indicating the contributions from the retained kernels
are statistically correlated to each other. By taking such correlations into account, the system representation can be improved to contain
fewer kernels for a constant model accuracy. In this paper, the mathematical derivation of the pattern correlation concept is discussed
and the concept is applied to a contact layer illuminated by a Quasar optical system with k = 193 nm and NA = 0.8. Significant improve-
ment of model kernel representation is observed, four improved kernels vs 15 original kernels, and the new methodology is justified by
comparing the difference of the aerial image intensities between the full kernel representation and the retained kernels representation at
sampling points.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Hopkin’s equation underlies most of today’s aerial
image simulators used for photolithography and optical
proximity correction (OPC). Based on the Hopkins equa-
tion, the aerial image intensity can be expressed as [1]:

Iðx; yÞ ¼
Z Z Z Z

Mðx1; y1ÞT ðx� x1; y � y1; x� x2; y

� y2ÞM�ðx2; y2Þdx1dx2dy1dy2; ð1Þ

where M(x,y) is the mask transmission function (binary
mask and dark field are assumed through the study),
T(x � x1,y � y1;x � x2,y � y2) is so called transmission
cross coefficient (Tcc) matrix. The 4-D model T(x1,y1;x2,y2)
can be decomposed into a series of its eigenvectors

T ðx1; y1; x2; y2Þ ¼
X1
i¼1

kiKiðx1; y1ÞK�i ðx2; y2Þ; ð2Þ

here ki is the eigenvalue corresponding to the eigenvector
Ki(x,y). With the expansion of a series of eigenvectors
and eigenvalues, the image intensity becomes

Iðx; yÞ ¼
X1
i¼1

ki

Z Z
Mðx1; y1ÞKiðx� x1; y � y1Þdx1dy1

����
����
2

:

ð3Þ
Each eigenvector Ki(x,y) (optical kernel) can be interpreted
as the transfer function of a coherent imaging system. The
overall aerial image intensity is the sum of the images pro-
duced by an infinite number of coherent systems.

In practice, only a certain number of optical kernels are
retained based upon their importance to the aerial image,
as determined by the magnitudes of the eigenvalues. This
scheme works well for arbitrary photolithography masks.
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However, real masks are never arbitrary or random.
Instead, they have regular shapes and arrangements as gov-
erned by design rules. For instance, the design and mask
rules limit the smallest feature size and space. This implies
that the kernels containing spatial frequencies higher than
that determined by the design rules have limited response
to the pattern, allowing new kernels to be constructed for
those high frequencies. Therefore the contributions from
the retained kernels are statistically correlated. Taking such
correlation into account will lead to a better representation
of the retained Kernels without degrading model fidelity.
This correlation may also be employed to reduce the com-
putational demands of optical proximity correction and
resolution enhancement techniques (RETs) by reducing
the number of retained kernels while maintaining constant
model fidelity.

This study will discuss the theoretical derivation of the
improved kernel representation, which is followed by the
application of the concept on a real optical model and con-
tact and polysilicon layer. The comparison of the model
accuracy with original kernels and improved kernels is also
presented.

2. Theoretical background

To simplify the analysis, the aerial image intensity in Eq.
(3) can be expressed in a vector and matrix format since all
of the masks and kernels are decomposed into the Fourier–
Bessel functions [2]. Let the mask be expressed as a vector
X, and the eigenvectors (or eigenfunctions) of Tcc as ui,
then the intensity can be written as

Iðx; yÞ ¼
X1
i¼1

ðX TuiÞ2: ð4Þ

It should be noted that each element in X and ui is a func-
tion of reticle position (x,y). In the above equation, the
summation is usually dominated by the first several terms,
if the eigenvectors are sorted in the way that
k1 P k2 P � � �P k1. Therefore, in practice, the summation
can be truncated and only first n terms are retained as,

Iðx; yÞ �
Xn

i¼1

ðX TuiÞ2: ð5Þ

In the above scheme, the truncation to n terms is solely
based on the magnitudes of eigenvalues of Tcc matrix. This
is the best solution for arbitrary masks. In reality, however,
masks often have some certain patterns as dictated by the
design rules. For example, the mask usually has a mini-
mum feature size and minimum space. This implies that
the components of the mask vector X are statistically cor-
related to each other. Taking such correlation into account
might lead to further reduction of computational demands
without loosing the mode accuracy.

To find a better representation of the model kernels,
consider a new set of functions wi, which is generated by
rotating the original eigenfunctions ui:

ðw1;w2; . . . ;wnÞ ¼W ¼ UR

¼ ðu1; u2; . . . ; unÞðr1; r2; . . . ; rnÞ ð6Þ

where R is an orthogonal rotation matrix [3],
RRT = RTR = I (identity matrix).

After the matrix rotation, the aerial image intensity
becomes,

Iðx; yÞ ¼ X TUUTX ¼ X TURRTX T

¼ X TWWTX ¼
Xn

i¼1

ðX TwiÞ2

¼
Xn

i¼1

ðX UTriÞ2

ð7Þ

The above equation indicates that after an arbitrary rota-
tion of the eigenfunctions, the original signal values can
still be evaluated from the contribution of the rotated
eigenfunctions, in which the relative contribution of each
rotated eigenvector in the summation is different than the
contribution of the original eigenvector. In order to
squeeze the contribution of the signal value as much as pos-
sible into the first few model terms, thus employing smallest
number of rotated eigenvectors to represent for a constant
model accuracy, the optimum rotation matrix R needs to
be identified.

One method to squeeze the signal value into the first few
terms is to maximize each term in the summation, XTUri,
one by one with the best vector ri, which is a unit vector
and represents the ith column of the matrix R. For
instance, consider the first term, XTUr1. Suppose there is
a mask with s sampling points. A new matrix X can be con-
structed with the mask vectors Xi at all of the sampling
points as,

X ¼

X T
1

X T
2

:

X T
s

0
BBB@

1
CCCA: ð8Þ

Then the first term contribution of optical signal at all sam-
pling points can be described by a vector e1:

e1 ¼

X T
1 Ur1

X T
2 Ur1

:

X T
s Ur1

0
BBB@

1
CCCA ¼ XUr1: ð9Þ

Note, the norm of the above vector, eT
1 e1, represents the

overall contribution of optical signal from the first time
in the summation (7), and hence, it needs to be maximized.
Since r1 is the first column of the orthogonal matrix R, and

eT
1 e1 ¼ rT

1 UTXTXUr1; ð10Þ
the best r1 would be the unit vector that maximizes the qua-
dratic form (10). Following the same argument, the ith col-
umn of the rotation matrix R is the unit vector that
maximizes the quadratic form (10), subject to the con-
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