Contents lists available at ScienceDirect

Journal of Luminescence

journal homepage: www.elsevier.com/locate/jlumin

Concentration-dependent upconversion emission in Er-doped and Er/Yb-codoped LiTaO₃ polycrystals

Liansheng Shi^{a,*}, Qinyun Shen^a, Zhaozhong Qiu^b

^a School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150080, China ^b Department of Chemistry, Harbin Institute of Technology, Harbin 150001, China

ARTICLE INFO

Article history: Received 16 April 2013 Received in revised form 30 November 2013 Accepted 4 December 2013 Available online 11 December 2013

Keywords: Er-doped Er/Yb-codoped LiTaO₃ polycrystal Upconversion emission

ABSTRACT

Er-doped and Er/Yb-codoped LiTaO₃ polycrystals were synthesized by the solid-state reaction method at 1200 °C. The structural properties of Er/Yb:LiTaO₃ polycrystals were confirmed by the X-ray diffraction patterns. The upconversion emission spectra of Er:LiTaO₃ polycrystals showed that the intensities of the green and red upconversion emissions enhanced with the increasing concentration of Er^{3+} ions. The increased intensity ratio of the red to green emission was attributed to the two cross relaxation processes ${}^{4}S_{3/2} + {}^{4}I_{15/2} - {}^{4}I_{9/2} + {}^{4}I_{13/2}$ and ${}^{2}H_{11/2} + {}^{4}I_{11/2} - {}^{4}F_{9/2} + {}^{4}F_{9/2}$. Upconversion emission tuning from green to red was observed in Er/Yb:LiTaO₃ polycrystals under 980 nm excitation. It was proposed that the efficient cross relaxation process (${}^{4}F_{7/2} + {}^{4}I_{11/2} - {}^{4}F_{9/2} + {}^{4}F_{9/2}$) and the energy back transfer (${}^{4}S_{3/2} Er + {}^{2}F_{7/2} Yb - {}^{4}I_{13/2}$ at ${}^{2}F_{7/2} + {}^{4}F_{9/2} + {}^{4}F_{9/2}$) and the red to green emission in Er/Yb:LiTaO₃ polycrystals are indicated that the green emisting ${}^{4}S_{3/2}/{}^{2}H_{11/2}$ states and the red emitting ${}^{4}F_{9/2}$ state were populated via the energy transfer assisted UC process besides a two-photon process in Er/Yb:LiTaO₃ polycrystals.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

There is an interest in rare-earth ion doped materials capable of converting infrared to visible radiation by means of sequential excitation upconversion (UC) [1]. The visible UC emission could be used in the application of the display technologies, optical data storage and biomedical systems [2,3]. To meet the practical application requirements of the multiplexed biological labeling [4–8], many works have been expanded on the UC color output of rare-earth ions. Tuning the UC luminescence not only images and tracks the multiple molecular targets simultaneously, but also allows the scientists to understand, classify and differentiate complex human diseases [9]. It has been reported that adjusting the rate of cross relaxation (CR) process is an efficient route to tune the UC luminescence and govern the optical characteristics of rareearth ions [10,11]. Chen has found that tuning from the green to red UC emission in Ce/Yb/Ho:NaYF4 nanocrystals could be obtained by adjusting the CR processes of ${}^{5}S_{2}/{}^{5}F_{4}$ (Ho)+ ${}^{2}F_{5/2}$ $(Ce) \rightarrow {}^{5}F_{5} (Ho) + {}^{2}F_{7/2} (Ce) \text{ and } {}^{5}I_{6} (Ho) + {}^{2}F_{5/2} (Ce) \rightarrow {}^{5}I_{7} (Ho) + {}^{2}F_{7/2}$ (Ce) [10]. Vetrone reported that the enhancement of red UC emission and the reduction of green one in Er:Y₂O₃ samples under 980 nm excitation are attributed to the increased probability of CR process $({}^{4}F_{7/2} + {}^{4}I_{11/2} \rightarrow {}^{4}F_{9/2} + {}^{4}F_{9/2})$ [11]. Among the lanthanide

E-mail address: shiliansheng-001@126.com (L. Shi).

rare-earth ions, Er^{3+} ion has been the most studied one due to its favorable electronic energy level structures. Kapoor reported that the green emission of 100 mW and the red emission of 270 mW were gained in Er:Y₂O₃ under 975 nm excitation [12]. Zhang found that the color of UC emissions can be tuned from green to red by changing the concentration of Er^{3+} ions in Er:Y₂O₃ [13]. However, the insufficient efficiency of the UC emission limits the practical applications. Yb³⁺ ion is successfully used as a sensitizer to Er^{3+} ion since it has a much large absorption crosssection around 980 nm wavelength and can efficiently transfer its energy to Er^{3+} ion [14–17]. Furtherly, codoping Yb³⁺ ions could tune the UC emission from green to red in Er/Yb:ZrO₂ nanocrystal under 980 nm excitation [18].

Lithium tantalite (LiTaO₃) is a prominent multifunctional material, which exhibits the piezoelectric, ferroelectric, acoustooptical, electro-optical and nonlinear optical properties [19–21]. Visible and infrared lasing properties can be obtained by LiTaO₃ doped with transition metals or trivalent lanthanides (Ln³⁺) [22,23]. Er-doped LiTaO₃ polycrystal (Er:LiTaO₃) has attracted great attention due to its potential applications to integrated devices. This is because Er:LiTaO₃ could combine the lasing characteristics of Er³⁺ ion with the nonlinear optical properties presented by LiTaO₃ host material. Although the breakthroughs of controllable fluorescence have been achieved in Er/Yb:ZrO₂ nanocrystal, it is unclear that if a similar phenomenon can be also observed in Er/Yb:LiTaO₃ polycrystal. Therefore, the effect of Yb³⁺ ions on the optical characteristics of Er³⁺ ion is essential to study in Er:LiTaO₃

^{*} Corresponding author. Tel.: +86 13 93 641 6655.

^{0022-2313/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jlumin.2013.12.001

polycrystal, driven by the needs for miniaturization and integration of devices.

In this paper, Er-doped and Er/Yb-codoped LiTaO₃ polycrystals were synthesized by the solid-state reaction method at 1200 °C. The X-ray diffraction (XRD) was measured to understand the structural properties of Er:LiTaO₃ and Er/Yb:LiTaO₃ polycrystals. The UC emission spectra and pump power dependences were discussed. The UC mechanisms in Er:LiTaO₃ and Er/Yb:LiTaO₃ polycrystals under 980 nm excitation were studied.

2. Experimental

LiTaO₃ polycrystals doped with 0.5 mol%, 1.0 mol%, 1.5 mol% and 2.0 mol% Er^{3+} ions and Er^{3+} (1 mol%):LiTaO₃ polycrystals codoped with 1.0 mol%, 5.0 mol%, 10 mol% and 30 mol% Yb^{3+} ions were prepared by the solid-state reaction method at 1200 °C. The purities of Li₂CO₃, Ta₂O₅, Er₂O₃ and Yb₂O₃ are 99.99%. The powders were fully ground in an agate mortar by hand at least for 4 h. The sufficient fine and fully homogenous powders were pressed into a disk under 20 MPa. The mixture of the chemical precursors was heated at 750 °C for 4 h to resolve the Li₂CO₃ into Li₂O and CO₂. The polycrystals were generated at 1200 °C for 22 h. The raw material compositions (mol%) of the prepared Er:LiTaO₃ and Er/Yb: LiTaO₃ polycrytals are shown in Table 1.

The X-ray diffraction spectra of Er:LiTaO₃ and Er/Yb:LiTaO₃ polycrytals were used to identify the crystallization phase, which were measured by the XRD-6000 diffractometer using a copper Ka radiation source. A SPEX1000M spectrometer with a photomultiplier tube was used to measure the UC emission spectra. All these measurements were performed at room temperature.

3. Results and discussion

3.1. Phase and structure analysis

Fig. 1 displays the X-ray diffraction patterns of LiTaO₃ polycrystals codoped with Er^{3+} and Yb^{3+} ions (samples 5#, 7# and 8#) and the pure LiTaO₃ polycrystal. Since the same properties are obtained in Er:LiTaO₃ polycrystals codoped with the different concentration of Yb^{3+} ions, the measured XRD spectra of samples 1#–4# and 6# are not shown in Fig. 1. It can be seen that there are no new peaks observed for the samples 5#, 7# and 8# compared with the pure LiTaO₃, suggesting that Er^{3+} and Yb^{3+} ions have no influence on the structures of the samples. The samples are still trigonal system. Consequently, the Er^{3+} and Yb^{3+} ions may occupy the normal Li-site or Ta-site rather than the interstitial sites within the lattice.

3.2. UC luminescence spectra

Fig. 2 shows the UC emission spectra of $LiTaO_3$ polycrystals doped with different concentrations of Er^{3+} ions under 980 nm

Table 1	
Raw material compositions (mol%) of samples.	

	Er ³⁺ (mol%)	Yb ³⁺ (mol%)	
1#	0.5	0	
2#	1.0	0	
3#	1.5	0	
4#	2.0	0	
5#	1.0	1.0	
6#	1.0	5.0	
7#	1.0	10.0	
8#	1.0	30.0	

Fig. 1. The X-ray diffraction patterns of LiTaO_3 polycrystals codoped without and with ${\rm Er}^{3+}$ and Yb^{3+} ions.

Fig. 2. UC emission spectra of LiTaO₃ polycrystals doped with Er^{3+} ions under 980 nm excitation. The inset is the intensity ratios R(r/g) of the red emission to the green emission in LiTaO₃ polycrystals doped with different concentrations of Er^{3+} ions.

excitation. The inset is the intensity ratios of the red to green emission R(r/g) in samples 1#, 2#, 3# and 4#. As illustrated in Fig. 2, the green UC emissions have two luminescence peaks at 525 nm and 550 nm, corresponding to the ${}^{2}\text{H}_{11/2} \rightarrow {}^{4}\text{I}_{15/2}$ and ${}^{4}\text{S}_{3/2} \rightarrow {}^{4}\text{I}_{15/2}$ transitions of Er^{3+} ion, respectively. The red UC emission centered around 660 nm is attributed to the ${}^{4}\text{F}_{9/2} \rightarrow {}^{4}\text{I}_{15/2}$ transition [24]. It can be seen that the green and red UC emissions enhance with the increasing concentration of Er^{3+} ions. The inset of Fig. 2 shows that as the concentration of Er^{3+} ions increases, the intensity ratio of the red to green emission R(r/g) is enhanced.

To analyze the UC mechanism, the dependences of UC emission intensity on excitation power for Er:LiTaO₃ polycrystals under 980 nm excitation are displayed in Fig. 3. For an "unsaturated" UC process, the UC emission intensity depends on the excitation power, the required number of photons to produce the fluorescence can be obtained by the relation: $I_f \propto P^n$ [25], where I_f is the intensity of UC emission, P is the excitation power, and n is the required number of photons. As shown in Fig. 3, the slopes of green UC emissions are 2.10 and 2.22 for 3# and 4# samples, respectively. According to the previous work reported by Pollnau [26], the values of 2.10 and 2.22, which are slightly larger than n=2, imply that an additional three-photon process is involved to populate the green UC emission besides a two-photon process [27]. As for the red UC emission, the slope values of n are equal to 1.97 and 1.70 for samples 3# and 4#, respectively. Download English Version:

https://daneshyari.com/en/article/5400532

Download Persian Version:

https://daneshyari.com/article/5400532

Daneshyari.com