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a b s t r a c t

Recently a new kinetic model was presented in the literature, which describes localized electronic

recombination in donor–acceptor pairs of luminescent materials. Within this model, recombination is

assumed to take place via the excited state of the donor, and nearest-neighbor recombinations take

place within a random distribution of centers. Two versions of the model were presented which were

found to be in good agreement with each other, namely an exact model that evolves both in space and

in time, and an approximate semi-analytical model evolving only in time. The model simulated

successfully both thermally stimulated luminescence (TL) and optically stimulated luminescence (OSL),

and also demonstrated the power law behavior for simulated OSL signals. This paper shows that the

system of simultaneous differential equations in the semi-analytical model can be approximated to an

excellent precision by a single differential equation. Furthermore, analytical solutions are obtained for

this single differential equation, and for four different experimental modes of stimulation: TL, OSL,

linearly modulated OSL (LM-OSL) and isothermal TL processes. The exact form of the power law for the

model is found in analytical form for both OSL and isothermal TL processes. The analytical equations are

tested by successfully fitting typical infrared stimulated luminescence (IRSL) signals, as well as

experimental TL glow curves from feldspar samples. The dimensionless number density of acceptors

in the model is estimated from fitting the experimental IRSL and TL data. The analytical expressions

derived in this paper apply also to stimulated emission via the excited state of the donor–acceptor

system. However, the same analytical expression, with different numerical values for its constants, can

also be applied in the case of ground state tunneling, with important implications for luminescence

dating.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Localized transition recombination models (LTMs) have been
used for almost half a century since the pioneer work of Halperin
and Braner [1], to describe a variety of behaviors of luminescence
signals and for a wide variety of materials. Many variations of
these models have been developed, which are based on the
assumption of a fixed recombination probability between the
excited state of a trap and a recombination center [2–7]. For
reviews of experimental and modeling studies involving these
various versions of LTM models and their application for a variety
of natural and synthetic materials, the reader is referred to the
luminescence books by Bøtter-Jensen et al. [8], Chen and McKe-
ever [9], and Chen and Pagonis [10].

In addition to these models which assume a fixed recombina-
tion probability, recent experimental and modeling studies sup-
port the notion that the tunneling/recombination probability in
many materials may vary with time. Specific attention has been
paid to ‘‘anomalous fading’’ of luminescence signals in feldspar
samples, due to the importance of this phenomenon in dating
studies ([11–14]; and references therein). Several of these studies
have suggested that anomalous fading is due to quantum
mechanical tunneling from the ground state of the trap [15–21].
Furthermore, it has been shown that this ground state tunneling
process in various materials can be described by power-law decay
[22–24]. The experimental and modeling work by Poolton et al.
[15,16,25] and more recently by Jain and Ankjærgaard [26] and
Ankjærgaard et al. [27], provided valuable information on the
origin of infrared stimulated luminescence (IRSL) from feldspars,
and supported the existence of tunneling processes involving
localized recombinations with tunneling taking place from the
excited state of the trap, as well as charge migration through the
conduction band-tail states. In a recent paper Pagonis et al. [28]
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presented a new empirical kinetic model based on localized
electronic transitions between the ground and the excited state,
in an attempt to describe such tunneling via the excited state in
feldspars. Results from this model were compared successfully
with experimental CW-IRSL data, and were consistent with the
reported power law decay of luminescence from feldspars.

In a very recent important development in this research area,
Jain et al. [29] presented a new general kinetic model which
quantifies localized electronic recombination of donor–acceptor
pairs in luminescent materials. Recombination is assumed to take
place via the excited state of the donor, and to take place between
nearest-neighbors within a random distribution of centers. Two
versions of the model were presented, an exact model that
evolves in both space and time, and an approximate semi-
analytical model evolving only in time. These authors found good
agreement between the two models, and simulated successfully
both thermally stimulated luminescence (TL) and optically sti-
mulated luminescence (OSL). The model also demonstrated the
power law behavior for OSL signals simulated within the model.

The goals of the present paper are:

(a) To show that the system of simultaneous differential equa-
tions developed by Jain et al. [29] can be approximated to an
excellent precision by a single differential equation describing
stimulated luminescence emission in this physical system.

(b) To obtain analytical solutions of this single differential equa-
tion, for several possible modes of stimulation, namely TL,
OSL, linearly modulated OSL (LM-OSL) and isothermal TL
(ITL).

(c) To derive and study the exact analytical form for the power
law behavior in this system.

(d) To demonstrate how typical infrared stimulated lumines-
cence (IRSL) and TL signals can be analyzed using the derived
analytical equations, and what physical information can be
extracted from such experimental data.

The analytical expression derived in this paper applies to
stimulated emission via the excited state of the donor–acceptor
system. However, it can also be applied in the case of ground state
tunneling, a result of interest in luminescence dating.

2. Analytical solutions of the model by Jain et al. [29]

In this section we show that the system of equations in the
semi-analytical model can be replaced with a single differential
equation, which provides an excellent approximation to the
original set of equations. Furthermore, an analytical solution is
obtained for this single differential equation. The equations in the
model of Jain et al. [29] are:
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The following parameters and symbols are used in the model:
ng and ne are the instantaneous concentrations of electrons in the
ground state and in the excited state correspondingly. m is the
instantaneous concentration of acceptors (holes), n is the instan-
taneous concentration of all the donors, and N represents the
instantaneous concentration of electrons in thermally discon-
nected states, such that m¼nþN¼(ngþne)þN. The parameter A

represents the excitation rate from the ground to the excited
state, and is equal to A¼ sexp �E=kT

� �
and A¼s(l)I for the cases

of thermal and optical excitation correspondingly, and b is the
linear heating rate. Here E¼thermal activation energy, s is the
frequency factor, l is the optical stimulation wavelength, s(l) is
the optical absorption cross-section and I is the light intensity
(cm�2 s�1). Additional parameters are the dimensionless number
density of acceptors r0, the critical tunneling lifetime tc and z¼1.8
a dimensionless constant introduced in the model. B is the
relaxation rate from the excited into the ground state, and L(t)
is the instantaneous tunneling luminescence from recombination
via the excited state. If the detailed balance principle is assumed
to be valid, one also has B¼s. However, this is not a necessary
condition for obtaining the analytical solutions in this paper.

Jain et al. ([29], their figure 4b) showed that for typical
numerical values of the parameters in the model, ne is many
orders of magnitude smaller than ng. Furthermore, excited states
relax quite rapidly compared to the time scales of TL and OSL
experiments, and therefore one can model the excited state in the
quasi-steady approximation. Specifically the time scale for elec-
tronic relaxation processes involving the excited states (term dne/
dt in Eq. (2)) can be of the order of ns or ms, while the time scale
for TL processes can be of the order of ms or s (luminescence term
3r’1=3=tc lnno=n

� �2=3
z in Eq. (2)). On the basis of this observation

(which is verified by the numerical simulations in this paper), one
can use the approximation
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With typical values of B in the range of 106–1012 s�1 or higher,
this is likely a very accurate assumption. Applying the condition
(6) to Eq. (2), it then follows that the term on the left hand side
can be ignored, and this equation can be solved for ne to yield:
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It is noted that a similar approximating method was used in a
recent paper by Chen et al. [30], to obtain semi-analytical
solutions for a system of differential equations in a two stage
model of TL. Substituting Eq. (7) into (1) we obtain:
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For typical values of the parameters, the numerical value of the
quantity 3r’1=3=Btc lnno=n

� �2=3
z in the denominator of this equa-

tion is much smaller than 1. By inspection of Eq. (2), it is seen that
this is equivalent to the retrapping term Bne being much smaller
that the term 3ner’1=3=tc lnno=n

� �2=3
z representing the lumines-

cence pathway. Hence we can approximate
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It is noted that the derivative dng/dt in this equation also
represents the luminescence intensity given in Eq. (3) as
L(t)¼�dm/dtE�dng/dt, since m¼(ngþne)þN and neoong, as
discussed above. Substituting Eq. (5) into (9) and using
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