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Ayhan Özmen a, Bekir C- akır a,n, Yusuf Yakar b,n

a Physics Department, Faculty of Science, Selcuk University, Campus 42031 Konya, Turkey
b Physics Department, Faculty of Arts and Science, Aksaray University, Campus 68100 Aksaray, Turkey

a r t i c l e i n f o

Article history:

Received 5 July 2012

Received in revised form

31 December 2012

Accepted 9 January 2013
Available online 18 January 2013

Keywords:

Spherical quantum dot

Relativistic effects

Fine structure splitting

Global operator

a b s t r a c t

We calculated the energy eigenvalues and eigenfunctions of the ground and excited states of a

hydrogenic impurity located at the center of a spherical quantum dot using the Quantum Genetic

Algorithm (QGA) and Hartree–Fock Roothaan (HFR) method. In addition, we carried out the relativistic

effects such as the relativistic correction to the kinetic energy, spin–orbit and Darwin terms by using

the perturbation method. The electronic charge density for the Darwin term is computed from the

Hiller, Sucher and Feinberg formulation instead of the traditional delta function operator. The results

show that impurity, dot radius and confining potential have a great influence on the relativistic effects.

In addition, as the absolute value of confining potential increases, the peak values of relativistic

corrections increase and move toward lower dot radii.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Theoretical study related to relativistic terms on low-
dimensional structures is a relatively new field of research. An
excellent match between theory and experiment requires rather
precise estimates of the calculation of relativistic effects to the
ground and excited energy states of semiconductor nanostruc-
tures. Therefore, the relativistic effects which are sometimes
called subtle effects are important for many properties of nano
structures. Quantum Dots (QDs) whose charge carriers (electrons
and holes) are confined in three-dimensions are often referred to
as artificial atoms because their electronic states are quantized
and their shell structures are similar to those of atoms [1]. Thanks
to modern technology, it has now become possible to produce
QDs by using various techniques such as etching or molecular
epitaxy etc. [2]. QDs are widely used to model a variety of
problems in physics and chemistry [1,3]. Due to their small size,
these structures display an interesting behavior and play an
important role in microelectronic and optoelectronic devices.
Therefore, a number of authors have devoted themselves to study
the electronic structure of QDs [4–14].

It should be noted that the role of the electron spin and the
corresponding effects significantly change the physical properties
of the semiconductor nanostructures, especially in QDs [15]. Thus,

calculating of the spin-related effects is attractive and important
not only from the fundamental scientific point of view, but also
because of their effects on the electronic and other properties of
QD [16,17]. Recently, some authors have studied the spin effects
in low-dimensional structures [16–27]. Gharaati and Khordad
[18] calculated the effects of magnetic field and spin orbit
interaction on energy levels of quasi-one dimensional quantum
wire. They also carried out the Lande-g factor in quantum wire
under an applied magnetic field and the Rashba effect. Glazov and
Kulakovskii [21] studied theoretically the spin–orbit effects in
disk-shaped QDs. Hassanabadi et al. [22] performed a detailed
investigation of the nonlinear optical properties of a QD in the
presence of the Rashba spin–orbit interaction. In single InAs/GaAs
QDs grown by metal–organic chemical vapor deposition, a sys-
tematic change of the exciton fine structure splitting with
quantum dot size was observed experimentally by Seguin et al.
[25]. Yang et. al. [26] studied theoretically the relativistic effects
such as the relativistic correction to the kinetic energy, spin–orbit
interaction and Darwin term for a hydrogenic impurity located at
the center of a spherical QD by using a simpler exact solution for
the finite potential well. Huang et. al. [27] calculated the relati-
vistic effects as a function of atomic number Z for a hydrogen like
ions located at the center of a spherical cavity by using the
B-spline method. Up to now, there are a few theoretical studies on
the relativistic effects in QDs. The impurity effects associated with
the spin–orbit interaction and Darwin term were not considered
theoretically in the above mentioned works. In addition, in
calculation of Darwin term, the contribution coming from ‘a0
states was not taken into account in several studies related to the
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nanostructures. A detailed theoretical study on the relativistic
effects is still lacking in QDs. Therefore, studies in this field are
still important for both theoretical research and practical
applications.

In our previous study [28], we calculated the energies of the
ground and excited states and the wavefunctions of a spherical
QD with infinite confining potential well and also carried out the
relativistic terms. In the present study, we have extended our
previous study to a spherical QD with finite confining potential
well. We also investigated the relativistic terms such as the
relativistic correction to the kinetic energy, which is sometimes
called the mass–velocity term, the spin–orbit interaction and
Darwin terms. The Darwin term has been calculated from a global
operator defined by Hiller, Sucher and Feinberg as opposed to the
local delta function operator.

2. Theory and definitions

The nonrelativistic Hamiltonian of a hydrogenic impurity
located at the center of a spherical cavity can be written as
follows:

H0 ¼�
_2r2

2m
�

ke2

er þVC rð Þ, ð1Þ

where k, m and e are electric constant, the mass of free electron
and dielectric constant of medium, respectively. The term VC(r) is
the spherical confining potential: VC(r)¼V0 for roR and VC(r)¼0
for rZR.

The energy eigenvalues of the nonrelativistic Hamiltonian may
be further improved by including the relativistic effects such as
the mass–velocity, spin–orbit interaction and Darwin term. These
effects can be calculated perturbatively because they are rela-
tively small when they are compared with to the magnitude of
unperturbed Hamiltonian, but they may be important.

In relativistic calculations, the Hamiltonian can be written as

H¼H0þH0, ð2Þ

where H0 is the unperturbated Hamiltonian, H0 is the relativistic
perturbation Hamiltonian and it is given by

H0 ¼HKþHSOþHD ð3Þ

The relativistic terms have been defined in the literature in a
number of different ways. The first term HK on the right of Eq. (3)
is the relativistic correction to the classical kinetic energy because
it rises from the relativistic variation of mass with velocity, and it
is given as follows [26]:

HK ¼
�P4

8m3c2
, ð4Þ

in which c is the speed of light in vacuum and P is linear
momentum operator of electron.

The second term HSO in Eq. (3) is the spin–orbit interaction due
to the fact that the moving electron’s spin changes the energy
levels. The electron spin makes it act like a little electromagnet. As
known from classical electrodynamics, a moving magnet interacts
with the electric field of the nucleus and it changes the energy
levels. The understanding and control of fine structure splitting in
QDs is a relevant issue for quantum information applications
[23,29]. The spin–orbit Hamiltonian is given by [26]

HSO ¼
kZe2

e

� �
1

2m2c2r3
S:L ð5Þ

where L and S are the operators of orbital and spin angular
momentum of electron. Since the unperturbed state function, f,
is also an eigenfunction of L2, S2 and J2, we have

S:L9fS¼ 1=2½jðjþ1Þ�lðlþ1Þ�3=4�_29fS, where j is the total angu-
lar momentum quantum number of electron.

The last term HD in right of Eq. (3) is Darwin term. It may be
thought of arising from a relativistically induced electric moment
of the electron, and this term is given by [26]

HD ¼
kZe2

e

� �
p_2

2m2c2
d r
!
� �

, ð6Þ

where the term dð r
!
Þ is the delta function operator.

The electronic charge density, r, is usually evaluated from an
expectation value of the traditional delta function operator, dð r

!
Þ,

at the origin of the coordinate system, rdð0Þ ¼/f9dð r
!
Þ9fS. The

expectation value of a delta function operator has non zero only
for s type orbitals, and so the expectation value of the delta
function operator vanishes for the states with ‘a0. In calcula-
tions made with the delta function, even if the appropriate
wavefunctions are selected, these calculations may have signifi-
cant errors at origin. Hiller, Sucher and Feinberg (HSF) have
shown that the delta function operator, rd, can be replaced by a
global operator, rHSF, and they have obtained the electronic
charge density at origin from the global operator for a multi-
electron system as follows [30]:

rHSF 0ð Þ ¼

1
2p/f9
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here, the term V indicates the total potential energy operator
(impurity attraction plus confining potential) in Eq. (1) and L2

i is
the angular momentum operator for the ith electron. The HSF
formulation has been tested in several electronic charge and spin
density studies for atomic systems and the expectation values of
rHSF(0) showed smaller errors by an order of magnitude or more
than those from the traditional delta function calculation of rd(0)
[31]. For the nonrelativistic Hamiltonian, the eigenvalue equation
is given by

H0fn‘m‘
¼ En‘fn‘m‘

ð8Þ

in which n, ‘, m‘ are quantum numbers of one-electron wave-
function f. In the HFR approach [32,33], the wave function is
normalized and it can be written as linear combination of basis
sets [32], wk,

fi ¼YðR�rÞfroR
i þf1�YðR�rÞgfr4R
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where i denotes the quantum numbers of atomic orbitals, Y(x) is
the Heviside step function, uroR (ur4R) is the size of the basis set
used for the inner (outer) part of the wave function, croR

ik (cr4R
ik ) is

the expansion coefficients and zroR
ik (zr4R

ik ) is the screening
parameters for kth basis function which is Slater Type Orbital
(STO) [34].

In order to calculate spin–orbit term, the coupled wavefunc-
tion fn‘jmj

is constructed from linear combination of the spin
wavefunction, fn‘m‘ms

, as follows:

fn‘jmj
¼
X

m‘ms

/‘sm‘ms9jmjSfn‘m‘ms
, ð10Þ

where j is the total angular momentum quantum number,
/‘sm‘ms9jmjS is Clebsch–Gordon coefficient and fn‘m‘ms

is the
zero-order wavefunction of nonrelativistic state, and it is given
fn‘m‘ms

¼fn‘m‘
ssms , where ssms is spin function.

A. Özmen et al. / Journal of Luminescence 137 (2013) 259–268260



Download English Version:

https://daneshyari.com/en/article/5400715

Download Persian Version:

https://daneshyari.com/article/5400715

Daneshyari.com

https://daneshyari.com/en/article/5400715
https://daneshyari.com/article/5400715
https://daneshyari.com

