
Author's Accepted Manuscript

Co precipitation synthesis and photoluminescence properties of K_2GdZr $(PO_4)_3:Eu^{3+}$ - a deep red luminomagnetic nanophosphor

Santa Chawla, Ravishankar Yadav, Raj Kumar, Atif Khan, R.K. Kotnala

www.elsevier.com/locate/jlumin

PII: S0022-2313(12)00701-6

DOI: http://dx.doi.org/10.1016/j.jlumin.2012.11.039

Reference: LUMIN11609

To appear in: Journal of Luminescence

Received date: 20 July 2012 Revised date: 7 November 2012 Accepted date: 26 November 2012

Cite this article as: Santa Chawla, Ravishankar Yadav, Raj Kumar, Atif Khan and R.K. Kotnala, Co precipitation synthesis and photoluminescence properties of K₂GdZr (PO₄)₃:Eu³⁺ - a deep red luminomagnetic nanophosphor, *Journal of Luminescence*, http://dx.doi.org/10.1016/j.jlumin.2012.11.039

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Co precipitation synthesis and photoluminescence properties of K_2GdZr (PO_4)₃: Eu^{3+} - a deep red luminomagnetic nanophosphor

Santa Chawla*, Ravishankar, Rajkumar, Atif Khan, R.K.Kotnala

CSIR-National Physical Laboratory, Dr K S Krishnan Road, New Delhi – 110 012, India

ABSTRACT

Nanoparticles of Eu³⁺ activated K₂GdZr(PO₄)₃ has been successfully synthesized by controlled

inclusive co precipitation method in high alkaline environment to enable complex crystalline

phase formation. Much enhanced deep red luminescence, broadened emission bands with

unusually prominent ⁵D₀-⁷F₄ transition at 699nm are defining characteristics of the nanoparticles

compared to bulk counterpart synthesized by solid state reaction route. Among various excitation

pathways such as charge transfer from O²- Eu³⁺, Gd³⁺- Eu³⁺, the direct excitation of Eu³⁺ at

394nm is the most effective as revealed by photoluminescence and time resolved studies.

Occurrence and variation of superparamagnetism in undoped and Eu³⁺ doped nanoparticles

indicate the role of unpaired 4f electron spin of Gd³⁺ in making the nanoparticles

superparamagnetic. A room temperature cost effective synthesis process of Eu³⁺ doped

multimetallic complex phosphate supermagnetic nanophosphor can pave way for applications

requiring such functionality.

PACS numbers: 78.67.Bf, 78.55.-Hx, 75.50.-y, 81.07.Wx

Keywords: Fluorescent nanoparticles, Photoluminescence, Superparamagnetism

Download English Version:

https://daneshyari.com/en/article/5400990

Download Persian Version:

https://daneshyari.com/article/5400990

<u>Daneshyari.com</u>