Contents lists available at SciVerse ScienceDirect

Journal of Luminescence

journal homepage: www.elsevier.com/locate/jlumin

Synthesis and characterization of Mn-activated lithium aluminate red phosphors

Masahiro Aoyama ^a, Yusuke Amano ^a, Koji Inoue ^b, Sawao Honda ^a, Shinobu Hashimoto ^c, Yuji Iwamoto ^{a,*}

^a Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

^b Department of Electrical Material Science, Mie Industrial Research Institute, 5-5-45, Takatyaya, Tsu-city, Mie 514-0819, Japan

^c Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

ARTICLE INFO

Article history: Received 1 June 2012 Received in revised form 12 October 2012 Accepted 4 December 2012 Available online 13 December 2012

Keywords: Lithium aluminate Sol-gel method Mn⁴⁺-activated red phosphor ESR spectroscopic analyses

ABSTRACT

Mn-doped LiAlO₂ powders were synthesized by the sol-gel method. The crystalline phase of the sol-gel-derived host lithium aluminate could be successfully controlled as α -LiAlO₂ single phase by heat treatment at 700 °C. The results of electron spin resonance spectroscopic analyses revealed that Mn ions existed as isolated Mn⁴⁺ and clustered cations in the host α -LiAlO₂ matrix, and a part of the isolated Mn⁴⁺ were thought to substitute the Al³⁺ octahedral sites. The red emission peaks derived from d–d transitions of the Mn⁴⁺ (3d³) configuration from ²E to ⁴A₂ were observed around 670 nm. The emission intensity increased consistently with the Mn-doping concentration, and the highest intensity was achieved at the Mn-doping of 0.10 mol. At and above 0.10 mol Mn-doping, the concentration quenching was observed. Based on these results, the relationships between the crystalline phases of the LiAlO₂ phosphor matrix, amount of the doped-manganese, and the photoluminescence properties were discussed from a viewpoint to develop a novel α -LiAlO₂:Mn⁴⁺ red phosphor.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The compounds in the ternary Li–Al–O system are known to exist in three phases of $LiAl_5O_8$, $LiAlO_2$ and Li_5AlO_4 as shown in Fig. 1 [1]. A lot of researchers have reported many different processes to synthesize lithium aluminates and their various properties [2–4]. Lithium aluminates have a wide field of application.

LiAlO₂ has existed in three allotropic forms, namely hexagonal α -LiAlO₂, monoclinic β -LiAlO₂ and tetragonal γ -LiAlO₂. The most stable polymorph is γ -LiAlO₂, and α - or β -LiAlO₂ is transformed to γ -LiAlO₂ at elevated temperature [5]. The γ -LiAlO₂ is one of the candidate materials as an irradiation blanket for nuclear fusion reactors because this material exhibits good thermochemical and irradiation stability [6]. Apart from this application, γ -LiAlO₂ has been well known as an electrolyte matrix of molten carbonate fuel cells (MCFC) [7]. Furthermore, in other applications, LiAlO₂ has been recently reported as a good luminescent material [8,9]. γ -LiAlO₂:Fe³⁺ was especially found to be attractive as a red phosphor for artificial illuminations [10]. Because of the lower fabricating temperatures below 1000 °C, LiAlO₂ is attractive as a low-cost host matrix of luminescent materials. The activators of transition metal ions such as Fe³⁺ and Mn⁴⁺ also have potential

E-mail address: iwamoto.yuji@nitech.ac.jp (Y. Iwamoto).

to develop inexpensive rare earth-free red-emitting phosphors for warm white light generation such as tri-color phosphors.

Thus, in this study, attentions have been focused on LiAlO₂ as the phosphor matrix and transition metal cation as the activator. Mn^{4+} ion exhibits luminescence in the visible regions (around 620–700 nm). In the ternary Li–Al–O material system, Mn^{4+} doped LiAl₅O₈ has been reported [11]. However, luminescence properties of Mn^{4+} doped LiAlO₂ have not been reported yet. In this study, Mn-doped LiAlO₂ powders were synthesized by the sol–gel method using aluminum isoproxide, lithium nitrate and manganese (II) chloride. The oxidation state of the manganese cation in the LiAlO₂ matrix was studied by the electron spin resonance spectroscopy, and the relationships between the crystalline phase of the LiAlO₂ phosphor matrix, amount of the doped-manganese, and the photoluminescence properties were studied and discussed from a viewpoint to develop a novel α -LiAlO₂:Mn⁴⁺ red phosphor.

2. Experimental

Lithium aluminate powders were synthesized by the sol-gel method. Aluminum isoproxide (Al(OiPr)₃, 99.9%, Kojundo Chemical Laboratory Co. Ltd., Saitama, Japan) and lithium nitrate (LiNO₃, 99.9%, Wako Pure Chemical Industries Ltd., Osaka, Japan) were used as starting materials, and manganese (II) chloride tetrahydrate (MnCl₂·4H₂O, 99.9%, Kojundo Chemical Laboratory Co. Ltd.,

^{*} Corresponding author. Tel.: +81 52 735 5276.

^{0022-2313/}\$ - see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jlumin.2012.12.012

Fig. 1. Phase diagram of lithium aluminates.

Saitama, Japan) was selected as a source of Mn cation. Distilled water was mixed with the metal alkoxide to produce white solution, which was stirred at 90 °C to complete hydrolysis. LiNO₃, MnCl₂·4H₂O and concentrated HNO₃ were added to the solution. The Li/Al molar ratios were 1/1. After drying, the gel precursor powders were converted into the lithium aluminate powders by heat treatment at various temperatures ranging from 600 to 900 °C.

Thermogravimetric and differential thermal analysis (TG-DTA) were used to determine the weight loss at high temperature (TG8120, Rigaku, Japan). X-ray diffraction (XRD, Philips, X'pert Pro α 1, Japan) measurements were performed on the heat treated samples with CuK α radiation (λ =0.15406 nm) using an automated powder diffractometer equipped with monochrometer. Electron spin resonance (ESR) measurements of the sample powders were carried out at the X-band on a JEOL JES-RE1X spectrometer. The ESR X-band spectra were recorded at R.T. The microwave frequency was 9.13 GHz, and a 100 kHz field modulation was used. The g values were calculated from the measurements of the magnetic field and the microwave frequency parameters. UV-vis absorption spectra were measured at room temperature using ultraviolet and visible spectrophotometer (V-570, JASCO, Japan) with a deuterium lamp (190–340 nm), W-I2 lamp (340-2500 nm). The photoluminescence (PL) emission and excitation spectra were measured at room temperature using fluorescence spectrometer (F-7000, Hitachi, Japan) with a Xe lamp. The PL internal and external quantum efficiencies for the light emission materials were measured through PL measurements using 60 mm integrated sphere.

3. Results and discussion

The result of TG analysis for the dried gel precursor powders is shown in Fig. 2. The TG curve shows two distinct steps. In the first step, the weight loss occurs over a temperature range from room temperature to approximately 100 °C, which is due to dehydration of adsorbed water. In the second step, the weight loss occurs between 300 °C and 500 °C. It is due to the denitration and dehydro-condensation reactions. These reactions were observed in the same temperature range as shown in the previous report [12].

Fig. 2. TG curve of the dried Li-Al-O gel precursor sample.

From this TG result, gel precursor powders were heat-treated in air at various temperatures ranging from 600 to 900 °C.

XRD patterns of the powder samples are shown in Fig. 3. The α -LiAlO₂ crystallization from the Mn-free dried gel precursor powder started at 600 °C, and then subsequent α/γ -LiAlO₂ phase transformation started at 750 °C. After the heat treatment at 900 °C, the XRD pattern was identical to γ -LiAlO₂ single phase (Fig. 3(a)). To study the luminescent properties stepwise, low temperature phase of α -LiAlO₂ was selected. Then, the Mn-doped samples were heat-treated at 700 °C, and α -LiAlO₂ sample powders with the Mn-doping range from 0.05 to 0.15 were successfully synthesized (Fig. 3(b)).

The ESR spectrum of the 0.10 mol Mn-doped α -LiAlO₂ is shown in Fig. 4. Two typical signals derived from Mn ions were observed. The sextet ESR signal (labeled as I, g=3.726) is assigned to isolated Mn^{4+} ions [13]. The other one (labeled as II) is two overlapping ESR signals; broadening line due to the exchangecoupled Mn ions clusters (g=1.983) [14], and the characteristic sextet signal derived from isolated Mn^{2+} or Mn^{4+} ions (g=2.022) [15]. During the heat treatment to 700 °C, most of the MnCl₂derived Mn (II) ion in the gel precursor powder could be oxidized to Mn (IV). The existence of the isolated Mn⁴⁺ strongly suggests that a part of Mn⁴⁺ ions could substitute the Al³⁺ octahedral sites in α -LiAlO₂. As shown in Fig. 3(b), the XRD peak shift was not observed for all the Mn-doped samples. This result could be predicted due to the similar ionic radius of Al^{3+} (r_{Al}^{3+} =0.535 Å) and Mn^{4+} (r_{Mn}^{4+} =0.530 Å). For example, the Mn^{4+} ions substituted the Al^{3+} sites in the calcium aluminates (CaAl₁₂O₁₉) [16]. It was also reported that Mn⁴⁺ ions could substitute the six-oxygen coordinated Ge^{4+} sites in the 3.5MgO \cdot 0.5MgF \cdot GeO₂ matrix because Mn^{4+} and Ge^{4+} ions have the same valence state, and ionic radius $(r_{Mn}^{4+} = r_{Ge}^{4+} = 0.530 \text{ Å})$ [17].

Fig. 5 shows the excitation and the absorption spectra of the 0.10 mol Mn-doped α -LiAlO₂. The maximum intensity of the excitation spectrum was determined to be 300 nm. Then, the emission spectra (λ_{ex} =300 nm) of the Mn-doped α -LiAlO₂ were recorded and the results are shown in (Fig. 6(a)). The spectra revealed red emission peaks around 670 nm derived from d–d transitions of the Mn⁴⁺ (3d³) configuration from ²E to ⁴A₂. The relation between the amount of doped Mn and the dominant PL emission peak intensity at 670 nm is shown in Fig. 7. The emission intensity at the 0.10 mol Mn doping was the highest among the Mn-doped α -LiAlO₂ in this study. At and above

Download English Version:

https://daneshyari.com/en/article/5401005

Download Persian Version:

https://daneshyari.com/article/5401005

Daneshyari.com