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a b s t r a c t

In this study, a detailed investigation of the nonlinear optical properties such as optical absorption and

refractive index change associated with intersubband transitions in a three-electron quantum dot in

two dimensions in the presence of the Rashba spin–orbit interaction has been carried out. We present

the exact wave functions and energy levels of the system. Numerical results on typical GaAs/AlGaAs

materials show that the decrease of the quantum dot radius blueshifts and amplifies the absorption

coefficients as well as the refractive index changes, as expected. Additionally, an increase of the optical

intensity and relaxation time considerably changes the absorption coefficients and the refractive index

changes.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Studies of discrete energy levels for three-electron quantum dots
represent a particular interest because well-known model-indepen-
dent methods of Faddeev equations and the HF can be applied for
the description of these systems. Just like many other branches of
physics, again the choice of the potential plays a crucial role. The
three-electron quantum dots in different potentials including the
harmonic, coulomb and Gaussian terms were studied in Refs. [1–8]
using different methodologies. In such systems, the effect of spin–
orbit interaction in the spectrum is definitely important. In technical
words, we frequently investigate the Dresselhaus and Rashba
interactions, which are respectively due to the electric field pro-
duced by the bulk inversion asymmetry of the material and the
structural asymmetry of the heterostructure. There is now no doubt
about the dependence of optical and electrical properties of confined
electrons in quantum dots, wells and wires on the Rashba spin–orbit
coupling and the experimental data does verify this claim [9–17].

From the other side, it is well known that the nonlinear optical
properties can be enhanced dramatically in low-dimensional quan-
tum systems. These strong nonlinear optical properties, such as
harmonic generation, refractive index changes, optical rectification,
optical absorption effects and so on, have a great potential in several
device applications, such as in far infrared laser amplifiers and
waveguide splitters. Hence, optical properties of QDs have been
investigated both experimentally and theoretically by many authors

[18–30]. On the other hand, although the nonlinear optical properties
of excitons in QDs are examined widely in the literature, those of
electrons have just been investigated only for the past few years
[29–32]. Because the energy eigenvalues and their wave functions
related to single electron can be simply determined analytically. In
more than one-electron systems, determining the energy eigenvalues
and relevant wave functions are not so simple because of the
Coulomb interaction between the electrons. In this work, we will
devote our calculations to the nonlinear optical absorption coeffi-
cients as well as the refractive index changes of a three-electron QD
by considering Columbic and Rashba spin–orbit interaction. The
electronic states and energy eigenvalues are exactly solved. To the
best of our knowledge, this problem has not been studied extensively
in the literature.

2. Model and theory

The Hamiltonian Htot of the three-electron-quantum dot in
two dimensions with the Coulomb potential and by considering
Rashba spin–orbit interaction is

Htot ¼
X3

j,l ¼ 1,jo l
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where the Rashba spin–orbit interaction, the confinement poten-
tial and the standard Pauli matrices are

VCon ¼
0, ror0

V0, r4r0

(
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by introducing Jacobi coordinate as

R
!
¼

r1
!
þ r2
!
þ r3
!

3
, r!¼ r1

!
�r2
!ffiffiffi

2
p , l

!
¼

r1
!
þ r2
!
�2r3
!ffiffiffi

6
p ð5Þ

By using the hyperspherical coordinates including the hyperra-
dius x and the hyperangle x respectively defined via [5]:
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the total Hamiltonian can be written in the form

Htot ¼
p2
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where a¼ 9 l
!

9=9r!9. The total Hamiltonian Htot is separated in
terms of the center of mass and relative coordinate parts, i.e.

Htot ¼HðRc:m:ÞþHðxÞ ð9Þ

where HðRc:m:Þ content VCon. An equivalent statement is that the
eigenvalue equation of the system is

Em,n,g ¼ Em:c:m:þEn,g ð10Þ

where m, n and g are the quantum numbers. Therefore, we
represent the wave functions by Considering total Hamiltonian,
the

Cn,g,mðx,Rc:m:Þ ¼Qn,gðxÞcmðRc:m:Þ ð11Þ

Schrodinger equation for the hyperradius is

�‘ 2

2mn
e

d2

dx2
þ

3d

xdx
�
gðgþ2Þ

x2

" #
þ

c

x

( )
Qn,gðxÞ ¼ En,gQn,gðxÞ ð12Þ

The eigenvalues of above equation is
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and the eigenfunction can be written in the form
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where Nn,g is the normalization constant and Ln
k ðxÞ is the Laguerre

polynomial. Schrodinger equation appears for HðRc:m:Þ as
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c1,m,c:m:ðRc:m:Þ ¼ E1,m,c:m:c1,m,c:m:ðRc:m:Þ ð15Þ

where
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By introducing the dimensionless parameters according to
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The function uðm,em,a,RÞ and wðmþ1,em,a,RÞ are as follows:

uðm,em,a,RÞ ¼ B �
Jmþ1ðk

�
Þþ Jmþ1ðk

þ
Þ

Jmþ1ðk
�
Þ�Jmþ1ðk

þ
Þ
½JmðRk�Þþ JmðRkþ Þ�

 

þ½JmðRk�Þ�JmðRkþ Þ�

!
ð18Þ

wðmþ1,emþ1,a,RÞ ¼ B �
Jmþ1ðk

�
Þþ Jmþ1ðk

þ
Þ

Jmþ1ðk
�
Þ�Jmþ1ðk

þ
Þ
½Jmþ1ðRk�Þ

 

�Jmþ1ðRkþ Þ�þ½Jmþ1ðRk�Þþ Jmþ1ðRkþ Þ�

!

ð19Þ

where

k7
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Emþ

a2

4

r
7

a
2

ð20Þ

And the energy eigenvalues Em,c:m: of the system are found from
the following equation:
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We calculate the absorption coefficients and refractive index
changes using the linear wð1Þ and third-order wð3Þ optical suscept-
ibilities. The analytical forms of wð1Þ and wð3Þ are obtained from
modeling a QD as a two-level system. The susceptibility w is
related to the absorption coefficient aðnÞ by

aðnÞ ¼ n
ffiffiffiffiffiffi
m0

er

r
Im½e0wðnÞ� ð22Þ

where m0 is the permeability of the system. er ¼ n2
r e0 is the real

part of the permittivity, nr is the medium refractive index and e0

is the permittivity of vacuum. w is the Fourier component of wðtÞ
with expð�iotÞ dependence. Using the compact density-matrix
method, the optical absorption coefficient is given by [31]

aðnÞ ¼ að1ÞðnÞþað3Þðn,IÞ ð23Þ
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are the linear and the third-order nonlinear optical absorption
coefficients, respectively. e is the electronic charge of an electron,
ss is the electron density in the QD, bFS ¼ e2=4pE0‘ c is the fine
structure constant, I is the incident optical intensity, and hn is the
photon energy. The d function in Eqs. (3) and (4) are replaced by a
narrow Lorentzian by means of

dðEfi�hnÞ ¼
‘Gfi

p½ðhn�EfiÞ
2
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2
�
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Here G is the phenomenological operator. Nondiagonal matrix
element Gfiðf a iÞ of operator G, which is called as the relaxation
rate of fth state and ith state, is the inverse of the relaxation time
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