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a b s t r a c t

We present general analytical expression for two and three-dimensional cases of static energy transfer

kinetics in doped nanoparticles (of round, spherical and cylindrical shape). A series of numerical

experiments has been performed using Monte-Carlo simulation. The analytical expressions have shown

very good coincidence with the computer simulation.

& 2010 Elsevier B.V. All rights reserved.

For static luminescence quenching kinetics in unbounded
media there exists a well known non-exponential Forster decay
law, which describes the quenching as root time dependence
[1–4] (square-root for three-dimensional case and dipole–dipole
interaction).

Nowadays, luminescent nanoparticles are widely used as
markers giving rise to the question how the luminescence
properties will change depending on the restricted geometry of
the material, for example, polymer coils in solutions [5], photonic
crystals [6], porous glasses [7,8], nanoparticles [9]. For different
donor positions, the configurations of the surrounding acceptors
are different and can be controlled via luminescence kinetics.
Moreover, restrictions on the possible acceptors positions can
lead to diminishing of the space dimension, to, generally, non-
integer one. It is not something exotic and can easily be
encountered in experiment. For example, if we consider energy
transfer when both donors and acceptors can only be located
on the surface of spherical nanoparticles, the problem is
two-dimensional one, see Ref. [10].

In Refs. [8,9], specifically, luminescence quenching kinetics of
donors located on the surface of spherical nanoparticles by
acceptors randomly located in the volume has been considered.

Obviously, more general (and, surely, more complicated) case
is quenching of donors, which are also randomly located in the
nanoparticles volume. We have started the study considering
spherical nanoparticles, see recent publication [11]. Here we

present the general theoretical solution for the three- (spheres)
and two- (circles) dimensional nanoparticles, for cylindrical
nanoparticles; and show the results of computer simulation.

In our consideration we let acceptor concentration be small and
statistically uniform in the space of nanoparticles. Donor’s
concentration is much smaller still, so that we can neglect donor-
to-donor excitation migration. While computer simulating the
experiment, we have put one excited donor in one particle, at
random position. Number of acceptors in one particle has Gaussian
distribution around the average (number of positions available
multiplied by concentration). The concentration is the probability
of a certain position to be occupied by an acceptor atom.

The probability of elementary act of energy transfer from a
donor to a certain acceptor, located at distance r from a donor, is
CDA/rS, where S – multipolarity of interaction (S¼6 for dipole–
dipole, 8 for dipole–quadrupole, 10 for quadrupole–quadrupole
interaction) and CDA – microparameter of energy transfer
efficiency.

Let all the nanoparticles be of one size with radius R. First, we
will write the expression with the respect to donors located at the
certain distance rD from the center of nanoparticle, and then we
will average it over all rD, 0o¼rDo¼R.

We will give some details on the derivation of the results
having in mind two-dimensional case (d¼2), which is somewhat
more difficult than three-dimensional case (d¼3), which we have
addressed in Ref. [11], because it calls for more approximations.

We will start with the same approach as in Ref. [11].
Classically, intensity of luminescence is given by

IðrD,tÞ ¼ expf�f ðrDÞg, ð1Þ
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where the function in the exponent in the continuous approxima-
tion has the form

f ðrDÞ ¼NA

Z
S

dS 1�exp �
CDAt

rS

� �� �
, ð2Þ

where NA¼cN – average number of acceptors in the unit of area
(space), N – number of positions available for acceptors in the unit
of space, c – fraction of positions occupied (concentration).

We will neglect the size of donor and acceptor atoms (the
minimal distance of energy transfer). Therefore, in Eq. (2) we have
to integrate either over a whole circle dS¼2prdr, if r+rDo¼R, i.e.
0o¼ro¼R�rD, or over a segment

dS¼ dr 2r arccos
r2

D
þ r2�R2

2rrD

� �
if rþrD ¼4R and r�rDo ¼

R R�rDo ¼ ro ¼ RþrDð Þ:

f ðrDÞ ¼NA

Z R�rD

0
dr 2pr 1�exp �

CDAt

rS
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þNA

Z Rþ rD

R�rD

dr 2r arccos
r2

Dþr2�R2

2rrD

� �
1�exp �

CDAt

rS
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¼ J1ðrDÞþ J2ðrDÞ ð3Þ

First integral

J1ðrDÞ ¼NA

Z R�rD

0
dr 2pr 1�exp �

CDAt

rS

� �� �
ð4Þ

is analogue to the one appearing in consideration of quenching in
bulk, but with the bounded upper limit (R�rD). Here, difference
from quenching in bulk comes down to using incomplete gamma-
function instead of regular one. When the limit is not small, or for
the times t, satisfying

1{CDAt{ðR�rDÞ
S,

we have classic expression [3,4]:

J1 �NAGð1�d=SÞðCDAtÞd=Sp� ðW1tÞd=S, ð5Þ

W1 ¼ CDA NApGð1�d=SÞ
� 	S=d

, when d¼ 2 ð6aÞ

W1 ¼ CDA NA4p=3Gð1�d=SÞ
� 	S=d

, when d¼ 3: ð6bÞ

Here the rate W1—value, inverse to the time when lumines-
cence due to quenching in bulk will decrease by e times.

Second integral

J2ðrDÞ ¼NA

Z Rþ rD

R�rD

dr 2r arccos
r2

Dþr2�R2

2rrD

� �
1�exp �

CDAt

rS

� �� �
ð7Þ

reflects the specifics of the acceptors configuration around near-
surface donors—the fact that acceptors are absent in the half
(or greater) part of the space around near-surface donors.

Expression (7) with arccosine in it, moreover, its derivate with
respect to r, are not easy to integrate, leading us to expand both
expressions into a series.

To find the solution, we have used piecewise linear approx-
imation f(rD)¼h1(rD)+h2(rD), where h1 coincides with the hor-
izontal part of J1 up to a point Rx of intersection of the horizontal
line and tangent line to J2 in the point rD¼R (here, value of
� f(R)¼� J2(R) has the maximum, tangent values are also the
same f0(R)¼ J02(R)). After rD¼Rx h1 is identically zero, while h2,
alternatively, is zero at rDoRx, and for rDZRx

h2(rD)¼ J2(rD¼R)�(R�rD)J2
0(rD¼R) linearly approximates J2.

In the final point rD¼R, f(rD) value is approximately twice
smaller than the value in the starting point rD¼0:

J2





rD ¼ R

¼
ðW1tÞd=S

2
1�2k0

ðW1tÞ1=S

N1=d
AP

 !
: ð8Þ

Here we introduce parameter NAP—average number of accep-
tors in one nanoparticle:

NAP ¼ pR2NA, for d¼ 2, ð9aÞ

NAP ¼
4

3
pR3NA, for d¼ 3, ð9bÞ

and parameters

k0 ¼
2G 1�3=S
� �

3p G 1�2=S
� �� 	3=2

� 0:2 and

k1 ¼
2G 1�1=S
� �

p G 1�3=S
� �� 	1=2

� 0:6 for the case of dimension d¼ 2,

ð10aÞ

k0 ¼
3

16

G 1�4=S
� �

G 1�3=S
� �� 	4=3

� 0:2,

k1 ¼
3

4

G 1�2=S
� �

G 1�3=S
� �� 	2=3

� 0:7 for the three�dimensional case:

ð10bÞ

Tangent to the function –f(rD) has a form

q¼�Ju2





rD ¼ R

¼
W1tð Þ

d=S

R

k1N1=d
AP

W1tð Þ
1=S
�k0

9 W1tð Þ
1=S

8N1=d
AP

 !

for the two-dimensional case, ð11aÞ

q¼
ðW1tÞ3=S

R

k1N1=3
AP

ðW1tÞ1=S
�k0
ðW1tÞ1=S

N1=3
AP

 !

for the three-dimensional case: ð11bÞ

Crossing point of horizontal line and tangent line in rD¼R is
time-dependent Rx(t): Rx¼R(1�DR), where DR¼ ðW1tÞ1=S=

ð2k1N1=d
AP Þ.

The result for quenching kinetics is

I¼ 1�
ðW1tÞ1=S

2k1N1=d
AP

 !d

e�ðW1tÞd=S

þz W1tð Þe�ðððW1tÞd=SÞ=2Þ 1�2k0ðððW1tÞ1=SÞ=ðN1=d

AP
ÞÞ

� �
,

ð12Þ

where

z¼ 2
ð�1þqRÞþexpð�qRDRÞf1�qRxg

ðqRÞ2
for d¼ 2, ð13aÞ

z¼
3

ðqRÞ3
2�2qRþq2R2þexpð�qRDRÞ �2þ2qRx�q2R2

x

 �� �
for d¼ 3:

ð13bÞ

The formula for z (13) must be taken into account when
considering kinetics at time (W1t)d/So1. When one is interested
in kinetics at longer stages ((W1t)d/S41), it can be considerably
simplified, however, only under the condition that (W1t)d/S is
smaller than average number of acceptors in one nanoparticle NAP,
(see Eq. (11)):

I¼ 1�
ðW1tÞ1=S

2k1N1=d
AP

 !d

e�ðW1tÞd=S

þ
d

k1N1=d
AP ðW1tÞðd�1Þ=S

e
�
ðW1 tÞd=S

2 1�2k0
ðW1 tÞ1=S

N
1=d

AP

� �
,

T.T. Basiev et al. / Journal of Luminescence 130 (2010) 2305–23082306



Download	English	Version:

https://daneshyari.com/en/article/5402250

Download	Persian	Version:

https://daneshyari.com/article/5402250

Daneshyari.com

https://daneshyari.com/en/article/5402250
https://daneshyari.com/article/5402250
https://daneshyari.com/

