
Phase diagram of electron–hole systems: Interplay between exciton Mott
transition and quantum pair condensation

Tetsuo Ogawa a,�, Yuh Tomio a,b

a Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
b Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287, USA

a r t i c l e i n f o

Available online 12 May 2009

PACS:

71.10.Fd

71.30.+h

71.35.Cc

Keywords:

Electron–hole systems

Exciton Mott transition

Quantum pair condensation

Electron–hole Hubbard model

Coulomb correlation

Dynamical mean-field theory

a b s t r a c t

Quasi-thermal-equilibrium states of electron–hole (e–h) systems in photoexcited insulators are studied

from a theoretical viewpoint, stressing the exciton Bose–Einstein condensation (BEC), the e–h BCS-type

pair-condensed state, and the exciton Mott transition between an insulating exciton/biexciton gas phase

and a metallic e–h plasma phase. We determine the quasi-equilibrium phase diagram of the e–h system

at zero and finite temperatures with applying the dynamical mean-field theory (DMFT) to the e–h

Hubbard model with both repulsive and attractive on-site interactions. Effects of inter-site interactions

on the exciton Mott transition are also clarified with applying the extended DMFT to the extended e–h

Hubbard model.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The electron–hole (e–h) system is composed of two oppositely
charged fermions, electrons in a conduction band and holes in a
valence band, whose densities are assumed to be identical here.
Such e–h systems realized in photoexcited insulators have been
intensively studied not only because the e–h systems govern
linear and nonlinear optical properties of matters [1] but also
because various quantum phenomena are expected [2] to take
place depending on particle density, interparticle interaction
strength, temperature, and dimensionality. In usual materials,
the intraband relaxation is much faster than the interband one. In
a time scale after the intraband relaxation and before the
interband relaxation time, therefore, the system gets settled in a
quasi-thermal-equilibrium state. In this paper, we confine
ourselves to such quasi-equilibrium situation. Dynamical features
of carrier relaxation processes in e–h systems are not treated in
this paper.

We focus on the quantum cooperative phenomena, e.g., the
phase transitions and the quantum condensation in the e–h
systems with varying interaction strength, temperature, and
particle density. We shall guess intuitively what happens in a
quasi-equilibrium e–h system as the particle density increases. In

the low-density limit where only one electron and one hole are
excited, an ‘‘exciton’’ may be formed as a bosonic bound state of
an electron and a hole [3]. When two electrons and two holes are
excited, a ‘‘biexciton’’ (an excitonic molecule) is a possible bound
state (also bosonic). This biexcitonic state reflects characteristics
of the exciton–exciton interaction [4]. In the case that many
excitons are excited, dissociation of many excitons into a gas state
of electrons and holes (called the ‘‘e–h plasma’’) may be possible.
This is called the ‘‘exciton Mott transition.’’ The main origins of
this Mott transition are the Pauli blocking and enhancement of the
Coulomb screening.

To describe the exciton Mott transition, many-body Coulomb
correlation effects should be taken properly into account
continuously from weak to strong coupling regimes: from the
exciton gas (strong-coupling regime) to the e–h plasma (weak-
coupling regime). The dynamical mean-field theory (DMFT) [5] is
a powerful theoretical method to cover both regimes. In this
paper, we introduce this method applied to the issues of the
exciton Mott transition in three-dimensional e–h systems.

Assuming the quasi-thermal-equilibrium at very low tempera-
ture, macroscopic quantum phenomena, that is, e–h pair con-
densations are also expected, e.g., the Bose–Einstein condensation
(BEC) of excitons and the e–h superconductor-like state (e–h BCS
state). At relatively low e–h particle density (strong-coupling
regime), strongly bound e–h pairs undergo the BEC as an exciton
gas. On the other hand, at high e–h density (weak-coupling
regime) where the mean interparticle distance is shorter than the
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exciton Bohr radius, weakly bound e–h pairs may behave like the
Cooper pairs in conventional superconductors at sufficiently low
temperatures, that is, the Bardeen–Cooper–Schrieffer (BCS) state
of e–h pairs. We shall discuss these exciton BEC and e–h BCS
states and its crossover with the use of the self-consistent t-
matrix approximation in the DMFT framework.

A main aim of this paper is to discuss the quasi-equilibrium
phase diagram of the e–h systems as a function of interaction
strengths and temperature. To this end, for simplicity, we employ
the e–h Hubbard model,

Ĥ ¼ �
X
hiji;s

X
n¼e;h

tnâ
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ey
js ðâ
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The angle bracket hiji stands for the sum of adjacent sites. The
quantities te ðthÞ and me ðmhÞ are the transfer integral of the
electrons (holes) between the nearest-neighbor sites and the
chemical potential measured from the center of the bare electron
(hole) band, respectively. The on-site Coulomb interaction of the
e–e (h–h) repulsion and that of the e–h attraction are expressed
by U and �U0, respectively. Here we suppose that conduction
electrons and valence holes, whose bands are isotropic, have
infinite lifetime. Hereafter we use the bare DOS
r0
nðeÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2

n � e2
q

=ð2pt2
n Þ. In this lattice model (1), the interaction

strengths, U and U0, are treated as parameters, which are
independent of the particle density (the filling factor)
n � ne ¼ nh. Effects of the inter-site interactions will be discussed
later.

2. Exciton Mott transition

Here we first examine the exciton Mott transition. In this
section, we focus on the normal phase where the quantum
condensation of e–h pairs is not allowed. We shall employ DMFT,
which requires only the locality of the self-energy, and can take
full account of local correlations. This locality and the resulting
DMFT become exact in the limit of infinite spatial dimensions and
good approximation of the three-dimensional systems. Quantum
orderings in one-dimensional e–h systems are investigated in
detail in Refs. [6–9].

Within DMFT, the many-body problem of the lattice fermion
model, i.e., the e–h Hubbard model (1) is mapped onto the
problem of a single-site impurity embedded in an effective
medium. The effective medium, which is dynamical and is
represented by the noninteracting impurity Green function
Gn

0ðoÞ of an effective single-impurity Anderson model (SIAM), is
determined from the self-consistency condition
Gn

0ðoÞ
�1
¼ oþ mn � t2

nGnðoÞ, where GnðoÞ is the local Green
function for electrons or holes of the model. The condition is
read as Gn

impðoÞ ¼ GnðoÞ. The interacting impurity Green function
of the effective SIAM, Gn

impðoÞ, should be calculated exactly such
that effects of the interactions on the impurity site are fully
included. Contrary to the ordinary mean-field approaches, thus, in
the DMFT scheme the local correlations and dynamical quantum
fluctuations are taken into full account [10].

2.1. Phase diagram at zero temperature

We shall discuss the case of arbitrary filling (not half filling).
Results in the case of half filling are given in Ref. [10]. For the e–h
particle density na1, the process for determining mn is added to
the self-consistency cycle. We carried out the exact diagonaliza-

tion calculation to solve the SIAM. Here th=te ¼ 1 is fixed. Fig. 1
shows the phase diagram for n ¼ 0:25 (1

8-filling) at zero
temperature. We find that there are mainly three typical regions
in the phase diagram. In the case of weak attractive interaction,
the system is metallic, corresponding to the e–h plasma phase.
When U and U0 increase, the system becomes insulating.
A remarkable feature is that there are two types of insulating
states: the ‘‘exciton-like insulator phase’’ (exciton phase) for
strong repulsion (large U and U � U0) and the ‘‘biexciton-like
insulator phase’’ (biexciton phase) for strong attraction (large U0

and U0 � U). The former exciton phase appears only in the not-
half-filling case.

In the metallic phase, the quasi-particle weight Zn has a finite
value and there is finite DOS at the Fermi level (the quasi-particle
coherent peak), i.e., the interacting DOS rnð0Þa0. On the other
hand, in the biexciton-like insulator phase, Zn ¼ 0 and the
coherent peak of the DOS disappears. The exciton-like insulator
is characterized by that Zna0 but rnð0Þ ¼ 0. In addition, this
metal–insulator phase transitions are the first-order; coexisting
regions of several phases exist along the phase boundaries.

Appearance of the ‘‘exciton-like insulator phase’’ is understood
by considering the limit of U!1. In this limit, the model (1) can
be mapped onto a single-band attractive Hubbard model with the
attraction �U0:
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According to the results of DMFT study of this model [11,12], a
paring state appears in addition to the metallic state. This paring
state corresponds to the exciton-like insulator phase in our model,
in which incoherent local e–h pairs (do not condense) are formed.
Optical absorption spectra also show characteristic features of the
exciton-like insulator phase [13].

To confirm the phase diagram (Fig. 1), we apply also the slave-
boson mean-field approximation to the e–h Hubbard Hamiltonian
(1). Details are given in Ref. [14]. We here show only results. The
ground state of the e–h Hubbard model is characterized by three
different phases: (i) The ‘‘e–h plasma’’ phase (metallic); all of the
probability amplitudes of the slave bosons are finite. This phase is
a normal Fermi liquid. (ii) The ‘‘exciton gas (X gas)’’ phase
(exciton-like insulator); only the amplitudes for the empty
and excitonic configurations are finite. (iii) The ‘‘biexciton gas
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Fig. 1. Phase diagram for the exciton Mott transition in the ðU0;UÞ plane at n ¼ 0:25

at zero temperature for th=te ¼ 1. The shaded area is the coexistent region of the

metallic and insulating phases reflecting the first-order transition.
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