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a b s t r a c t

A simple but flexible 2D lattice model is proposed to discuss localization and tunneling of a dressed

photon in disordered nanomaterial systems. It is shown that a 1D finite disordered system with site-

dependent masses is obtained after the contraction from 2D to 1D. A dressed photon description for a

photon-electronic polarization–phonon interacting system is used to examine the spatial distribution of

a dressed photon associated with coherent phonons in such a system. The temporal and tunneling

behaviors of a dressed photon between two closely separated nanosystems are also investigated

numerically. The model proposed is applicable to an arbitrary shape of nanostructure, and photon

localization and tunneling inherent in the shape of the nanostructure is expected to be applied to the

local manipulation of quantum states of nanostructure in excitation transfer processes, including spin

and phonon degrees of freedom.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Optical near fields (ONFs) that are localized close to the
surfaces of materials originating in light-matter interactions are
free from the diffraction limits of light, and have been applied in a
variety of nanoscale spectroscopy and photochemical reactions.
These studies have revealed the unique properties and the
importance of phonons at the nanoscale [1,2], which arise from
the spatial localization of ONFs. In a near-field photodissociation
process, for example, molecules are dissociated even if the
energy of incident light is lower than the dissociation energy,
which is impossible when a far field with the same energy and
intensity is used, and suggests that phonons in an optically excited
probe system might assist the dissociation process in a non-
adiabatic way.

In order to clarify the phonon’s role at the nanoscale and the
relationship with ONFs, as well as to explore the possibility of
them, we discuss the mechanism of spatial localization and
tunneling of photons associated with phonons depending on the
shape of nanostructure, with the help of a quantum-theoretical
method. First, we model a nanostructure like an ONF probe tip as
a 2D lattice system with a varying site-interval less than the
coherence length of phonons. Reducing from the 2D to 1D
disordered finite system, we show that photons localize at the

edge of the system affected by the phonons’ localization, in terms
of a dressed photon description. Then, we evaluate the penetra-
tion length of ONFs, i.e., tunneling probability of dressed photons
as a function of the distance between them, locating another
nanosystem close to the ONF probe tip, e.g., a molecule, a
quantum dot, or a bow tie-shaped 2D lattice system.

The paper is organized as follows. The model and formulation
are outlined in the next section. Numerical results and discussion
on localization behavior and temporal behavior of a dressed
photon in two separated nanosystem are given in Section 3,
followed by concluding remarks in Section 4.

2. Model and formulation

We are interested in a system where incident photons,
electronic polarizations, and phonons are interacting one another
in the nanoscale region. A simple 2D finite lattice system, as
shown in Fig. 1, is considered for a nanostructure like an optical
near-field probe tip. The electronic polarizations induced in the
nanomaterial system are treated together with incident photons
as a quasiparticle which is hereafter called a photon [1]. We first
examine the vibrational (phonon) modes in the 2D nanomaterial
system, and then behavior of the photon–phonon interacting
finite system.

The model Hamiltonian Ĥ for the 2D nanomaterial system is
expressed in terms of site i ¼ ðix; iyÞ by

Ĥ ¼ Ĥx þ
XNx�1

ix¼0

Ĥy;ix þ
XNx�1

ix¼0

Ĥxy;ix , (1)
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where Ĥx represents the coupled oscillators on the x-axis, while
Ĥy;ix and Ĥxy;ix designate the coupled oscillators in the y direction
at site ix and the interaction to exchange momenta of the x and y

directions at site ðix;0Þ, respectively. Here Nx means the number of
sites in the x direction. Explicit expressions for Ĥy;ix and Ĥxy;ix are
given by

Ĥy;ix ¼
XNix

iy¼�Nix

p̂
2
y;iy

2m
þ

g

2m

XNix�1

iy¼�Nix

p̂y;iy p̂y;iyþ1

þ
k

2

XNix

iy¼�Nix

ŷ
2
iy

(2a)

¼ P̂y �M
�1
2Nixþ1 � P̂y þ

k

2
Ŷ � I � Ŷ, (2b)

Ĥxy;ix ¼ 2g0p̂x;0p̂y;0 ¼ 2P̂x � P̂y, (2c)

where p̂y;iy is the momentum at site iy conjugate to the
coordinate ŷiy while m, g, and k are mass, coupling constant
for the momentum exchange, and spring constant of the
oscillators, respectively. Eqs. (2b) and (2c) were expressed in
the compact form, with the help of the following matrix
representations as:

M�1
2Nixþ1 ¼

1

4m

2 �g 0 � � � 0

�g 2 �g 0

0 �g 2 . .
.

0

..

. . .
. . .

.
�g

0 0 0 �g 2

0
BBBBBBBBBB@

1
CCCCCCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2Nixþ1

,

P̂y ¼

p̂y;Nix

..

.

p̂y;0

..

.

p̂y;�Nix

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
; P̂x ¼

0

..

.

g0px;0

..

.

0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

, (3)

and the unit matrix I.
To clarify the 2D effects, we reduce the system dimension from

2D to 1D by integrating the y directional degrees of freedom.
Noticing that the P̂y-dependent terms in Eqs. (2b) and (2c) can be
written as

�P̂x �M2Nixþ1 � P̂x ¼ �g2
0ðM2Nixþ1Þ00p̂

2
x;0, (4)

they can be renormalized as mass correction factors, resulting in
the kinetic energy of a 1D Hamiltonian as

Ĥkin ¼
p̂

2
x;0

2m
� g2

0ðM2Nixþ1Þ00p̂
2
x;0

�
p̂

2
x;0

2mð1þ 2mg2
0ðM2Nixþ1Þ00Þ

�
p̂

2
x;0

2mix

. (5)

It follows from Eq. (5) that the 1D system has site-dependent
masses, mix , or it becomes a finite disordered system of coupled
oscillators.

In addition, introducing the coherence length of phonons, Lc ,
we allow the couplings more than the nearest neighbor sites, and
finally obtain the effective 1D Hamiltonian as

Ĥ1D ¼
XNx�1

i¼0

p̂
2
i

2mi
þ

k e�a=Lc

2
x̂

2
0 þ

k e�a=Lc

2
x̂

2
Nx�1

þ
k

2

XNx�2

i¼0

XNx�i�1

n¼1

e�na=Lc ðx̂iþn � x̂iÞ
2, (6)

where p̂i denotes the momentum conjugate to the coordinate x̂i,
and a represents the distance between two nearest neighbor sites.
According to Refs. [2,3], we have normal vibrational modes of the
system, or phonons after the quantization of the field [4].

Following the procedure described in Ref. [2], we can obtain
the Hamiltonian for a photon-electronic polarization–phonon
interacting finite system as

Ĥ ¼
XNx�1

i¼0

_ðo�oiÞâ
y

i âi

þ
XNx�2

i¼0

_Jiðâ
y

i âiþ1 þ â
y

iþ1âiÞ, (7)

where _ and o are the Planck constant divided by 2p and the
frequency of a photon, respectively. The operator âi, transformed
from a photon âi, represents a photon dressed by coherent
phonons which is written by

âi ¼ âi exp
XNx

p¼1

wip

Op
ðb̂
y

p � b̂pÞ

( )
, (8)

and the Hermitian conjugate of âi is denoted by âyi . Here wip and
Op are the photon–phonon coupling constant depending on site i

and phonon mode p and the frequency of the phonon specified by
mode number p, respectively. The creation (annihilation) operator
of a phonon in mode p is denoted by b̂

y

p (b̂p). The site-dependent
frequency of a dressed photon originating from the photon–pho-
non coupling is denoted by oi, while the site-dependent hopping
constant of a dressed photon due to the photon–phonon coupling
is expressed by Ji [2].

Since the Hamiltonian in Eq. (7a) is diagonalized by using an
orthogonal matrix, temporal evolution of the number operator of
a dressed photon, N̂iðtÞ, and the probability finding a dressed
photon at site i after a dressed photon is initially incident at site j

can be easily obtained.

3. Numerical results

Based on the formulation developed in Section 2, we present
typical numerical results to discuss the spatial distribution, the
temporal and tunneling behavior of a dressed photon in 1D finite
nanosystems.

Fig. 2 shows the mass correction ðM2Nixþ1Þ00 as a function of
site number in the y direction. As the number of oscillators in the
y direction increases, the absolute value of the mass correction
also increases, which is true regardless of the coupling constant g.
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Fig. 1. A simple 2D finite lattice system considered for a nanostructure like an

optical near-field probe tip. Each site is expressed by ðix ; iyÞ in the coordinate

system shown.
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