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We explore the dynamics of harmonically confined single electron quantum dots as a function of dot
size under periodically fluctuating confinement potential. The system of interest is a 2-D system in the
presence of a perpendicular magnetic field. We show that for given strengths of the magnetic field and
effective mass, a periodic variation in the strength of the confinement potential could invite interesting
features in the dynamics of the system. Also, the pattern of time evolution of eigenstates of the
unperturbed system reveals significant size-dependence. The fluctuation in the confinement potential

PACS: from its initial value is found to modulate the dynamical aspects in a prominent way. The presence of
gg'gg';k cubic anharmonicity in the confining field brings in new features in the dot dynamics.
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1. Introduction

In recent years, significant progr ess has been made in the
fabrication of low-dimensional structures thereby reducing the
effective dimensions from 3-D bulk materials, to quasi 2-D
quantum wires, and even to quasi 0-D quantum dots [1-3]. The
quantum confinement effects in such systems of reduced space
dimensions have attracted considerable attention. Maksym and
Chakraborty [4,5] worked out the energy levels and found an
incredibly rich structure. In quantum dots the electron energy
levels are quantized and the behavior is similar to that of an atom.
The presence of discrete energy levels, and even the manifesta-
tions of the shell structure which was predicted [6-9] and
experimentally observed [10] for quantum dots, give grounds for
treating them as artificial atoms [4,11].

The advantage of studying the quantum dot system is that the
properties of artificial atom can be extensively controlled by the
external applied field. The cyclotron frequency (a measure of
externally applied magnetic field strength), and confinement
potential are two important system parameters that demand
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discussion. The effect of magnetic field on the energy spectrum of
quantum dot is especially interesting. External electric and
magnetic fields can be added to generate new static and
dynamical effects in nanostructures [12-15]. The electronic
structure of quantum dots in magnetic fields displays a rich
scenario of different phases in the ground state. An overwhelming
amount of literature on this topic has been published. It has been
found that high magnetic field energetically favors the population
build up in only the lowest states sequentially with single-particle
angular momenta, and the energy increases monotonically with B.

The confinement potentials in quantum dots can be exploited
to describe [4,5] typical features of transport processes [15-19]
and spin oscillations in magnetic field [20,21]. The main
components responsible for the formation of the confinement
potential in a quantum dot include the external voltage applied to
the layered nanostructure and properties of contacts having
various geometries and connecting the quantum dot with
ambience [1,22]. Quantum mechanical effects play a significant
role in the description of the mechanism of quantum dot
formation. However, the form of the confinement potential may
be strongly affected under certain experimental conditions. For
example, the description of experiments involving photoemission
[23] in a quantum dot requires the introduction of anharmonic
corrections [24,25] to the parabolic confinement potential.
Dineykhan et al. showed how a change in the shape of
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confinement potential from that of parabolic dot can be achieved
based on an assumption that considers existence of an image
charge [26]. Kwasniowski et al. showed the effect of confinement
potential shape on exchange interaction in coupled quantum dots
by a CI method using confinement potentials of different profiles
[27]. Xie et al. analyzed two interacting electrons in a Gaussian
confinement potential quantum dot under the influence of a
perpendicular magnetic field [28].

Quantum dots are now realizable in various shapes and sizes
and device applications are being made. For making further
progress it is necessary that we can correlate the dynamical
aspects of the dot with dot size. As the physical dimensions of the
dot approach the nanometer scale, size effect begins to play an
important role, leading to drastic changes in the measured
properties [29]. In the last few years, semiconductor quantum
dots with tunable size have attracted a great deal of attention,
particularly in the 1.3-1.55 um range of optical communications
[30-33]. In consequence, of late, we investigated the influence of
size, on the optical properties of the quantum dot [34,35], and also
on its electronic structure and dynamics (under external sinusoi-
dal electric field) [36].

Above discussions raise some natural questions concerning the
outcome of the time-dependent modulation of the form of
confinement potential and its interplay with the dot size. What
will happen if the form of the confinement potential changes with
time? How such a change can be monitored? How anharmonicity
can influence such a change? etc. Thus, it would be interesting to
investigate the dynamics of the dot under a time-dependent
confinement potential. Such a time-dependence could be effec-
tively modeled by introducing a potential V(t) to the dot
Hamiltonian. The problem now boils down to following the
dynamics of the dot in the time-dependent potential. In the
present paper V(t) is so chosen that the confinement potential
varies sinusoidally with time about its initial value (i.e. at t = 0).
The size of the fluctuation could now influence the characteristic
parameters of dot dynamics viz. E(t) vs. t profile and population
distribution among the various eigenstates quite prominently.
Added to this, the dot size plays an anchoring role in modulating
the above dynamical aspects. The present paper is an attempt to
address these features.

2. Method

We assume that the electron in the dot atom has an effective
mass m* and has been confined by a harmonic potential [Vy(x,y) =
Im*w3(x? + y?)] in the simultaneous presence of a static perpen-
dicular magnetic field B (= V x A), A being the vector potential.
For the perpendicular magnetic field (By = B, = 0), and Landau
gauge used for A, the motion along z-axis is continuous while the
motion in the x—y plane is quantized and the quantized energy
levels are obtainable from the following energy eigenvalue
equation (in Cartesian coordinate system):

HO'»bn(XsY) = Enlrbn(xny)’ (1)
where
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w:.=eB/m*c is the cyclotron frequency. Introducing
Q> = w2+ w? we have Eq. (2) transformed into an energy
eigenvalue equation of a pair of interacting harmonic oscillator
Hamiltonian Hy and H, with harmonic frequencies wy and £,
respectively, the interaction operator given by

. 0
Vipe = —ih CUc}’&

That is, our problem reduces to modeling the energy eigenvalues
and eigenvectors of the 2-D Hamiltonian Hy:

Ho(X,¥, e, 00y (%.Y) = |H(@0) + Hy(@) — ihoy < u(x.y)

= Enth(x.). 3

Here we mention that the quantum properties of circular dots are
well understood in terms of Fock-Darwin states which provide a
complete orthonormal basis. In that case the symmetric gauge is
more suitable than the Landau gauge. Also the matrix elements
could have been analytically calculated in that basis. However,
since we also investigate the dynamical aspects of the system
under anharmonic perturbations Vi(x,y) present in the confine-
ment potential, and since exact solution is not possible in such
case, we explore a variational approach that can handle the
problem with or without anharmonic perturbation, on equal
footing. Thus, we write the trial wave function as a superposition
of the product of harmonic oscillator eigenfunctions. With this
basis the matrix elements are much simpler to determine than
with the Fock-Darwin basis.

Eq. (3) reduces to the energy eigenvalue equation of a 2-D
harmonic oscillator as @, (i.e. B)—0. It would be natural, there-
fore, to seek diagonalization of H(x, y, ., ®g) in the direct product
basis of eigenfunctions of Hx(wo) and Hy(£2). In order to investigate
the size-dependent properties, the spatial extension of the dot
wave function must be truncated at some finite value. Thus, in this
case the spatial extension of the wave function ranges from —L to
+L (instead of +o00) where L represents the dot size. Accordingly
the basis functions ¢,(x) and ¢,,(y) have to be modified. The
normalized, but non-orthogonal basis functions for the finite-
sized dot in the x-direction reads

2
¢,(X) = apHy(x) exp (7 %) 4)

where a, is the normalization constant of the basis function ¢, (x)
for the finite-sized dot. Analogously, we have the basis function
for the y-direction. The normalization constant a, is given by the
following expression [34-36]:

1\ 172
ap = (E) 5 (5)
where
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(6)

We may represent the trial wave function y(x,y) for the finite
dot as a superposition of the product of fixed basis functions ¢, (x)
and ¢,,(y), respectively, leading to

YY) = CambnX)Pm)- )

When anharmonicity (V;) in the confinement potential is added,
we have

H=Hy+ V;. 8

The various matrix elements in the direct product basis
{h,(x)¢,,(»)} can be worked out once the form of V; has been
specified. We have chosen Vi = A(x3 +y3) as the symmetry
breaking anharmonicity. The general expressions for the matrix
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