ELSEVIER

Contents lists available at ScienceDirect

Journal of Luminescence

journal homepage: www.elsevier.com/locate/jlumin

Optical properties of organic–inorganic hybrid films prepared by the two-step growth process

Nobuaki Kitazawa*, Dhebbajaji Yaemponga, Masami Aono, Yoshihisa Watanabe

Department of Materials Science and Engineering, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan

ARTICLE INFO

Article history:
Received 18 November 2008
Received in revised form
25 March 2009
Accepted 14 April 2009
Available online 22 April 2009

PACS: 78.67.Pt

Keywords: Excitons Self-assembly Optical properties Thin films

ABSTRACT

Thin films of microcrystalline $(C_8H_{17}NH_3)_2PbBr_4$ have been prepared by the two-step growth process as follows: (1) precipitation of nanometer-sized PbBr₂ particles on substrates by vapor deposition and then (2) growth of $(C_8H_{17}NH_3)_2PbBr_4$ films by exposing PbBr₂ particles to $C_8H_{17}NH_3Br$ vapor. Atomic force microscope observations reveal that the substrate is fully covered with nanometer-sized rodlike precipitates. X-ray diffraction studies suggest that $(C_8H_{17}NH_3)_2PbBr_4$ films are found to be microcrystalline form, single phase and highly oriented with the *c*-axis perpendicular to the substrate surface. $(C_8H_{17}NH_3)_2PbBr_4$ films show a clear exciton absorption and free-exciton emission even at room temperature. At low temperatures below 40 K, the emission band separates into three bands at 3.07 (A-band), 3.14 (B-band) and 3.20 (C-band) eV, respectively. Both A- and C-bands correspond to the free-exciton emission with large binding energies. On the contrary, time-resolved PL spectra indicate that the B-band is attributed to phosphorescence formed by the intersystem crossing.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, self-assembly of molecules, ions and amphiphilic polymers has attracted considerable interest due to the possibility of creating interesting low-dimensional materials [1,2]. Lead-halide-based layered perovskite compounds, with the general formula of $(C_nH_{2n+1}NH_3)_2PbX_4$ (X: halogen), can be regarded as one of the self-assembled materials consisting of organic ($C_nH_{2n+1}NH_3^+$) and inorganic (Pb X_4^{2-}) layers [3,4]. In these compounds, the Pb X_4^{2-} and $C_nH_{2n+1}NH_3^+$ layers are alternatively stacked with each other. The PbX_4^{2-} layer has a smaller band gap and a higher dielectric constant than those of the $C_nH_{2n+1}NH_3^+$ layer [5,6]. As a result, the exciton binding energy is amplified due to the quantum and dielectric confinement effects [7]. In addition, lead halides are well known as an ionic crystal with large exciton binding energy (30 meV for PbI₂ [5,6]). Stable excitons, with substantially large binding energy as large as a few hundreds meV, exist in $(C_nH_{2n+1}NH_3)_2PbX_4$ even at room temperature [8]. The large exciton binding energy offers interesting opportunities for use in novel optical and electrical devices [9-14]. From the viewpoint of materials design, $(C_nH_{2n+1}NH_3)_2PbBr_4$ can be expected to be interesting optical devices operated at the near-ultraviolet region because the optical band gap of PbBr₂ locates at 4.1 eV.

So far, $(C_nH_{2n+1}NH_3)_2PbI_4$ has been prepared as microcrystalline thin films and as single crystals by solution processes [6,15,16]. On

the contrary, the solution process is often limited due to the poor solubility of raw materials. Vapor phase deposition techniques are one of the promising candidates to overcome the difficulty [17–19]. By a single-source thermal ablation technique, (C₆H₅C₂H₄ $NH_3)_2PbX_4$ films (X = Br and I) have been prepared within a very short periods (<1 s) [18]. Precise control of the film thickness should be difficult due to its rapid ablation process. It is reasonable that organic components $(C_nH_{2n+1}NH_3X)$ evaporate at much lower temperatures compared to inorganic components (PbX₂). Therefore, a dual-source vapor deposition technique may require new synthetic parameters for each composition to balance the evaporation rates between organic and inorganic sources. Recently, a twostep growth technique has been proposed by the authors as follows: (1) precipitation of PbBr₂ particles on substrates by vapor deposition and then (2) growth of (C₈H₁₇NH₃)₂PbBr₄ by exposing PbBr₂ particles to C₈H₁₇NH₃Br vapor [20]. Exposure time probably plays an important role in the formation of $(C_nH_{2n+1}NH_3)_2PbBr_4$ because the synthetic approach is based on the layer-by-layer technique. However, the effect of exposure time on some properties of (C₈H₁₇NH₃)₂PbBr₄ films was still unclear. In this article, (C₈H₁₇NH₃)₂PbBr₄ films have been prepared by the two-step growth process and their surface morphology, absorption and luminescence properties have been investigated.

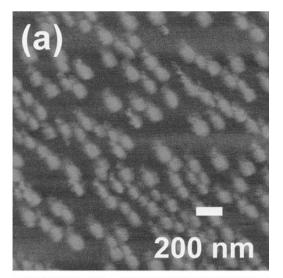
2. Experimental procedures

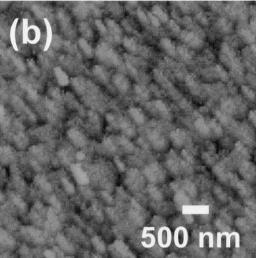
Samples were prepared using the two-step growth process [20]. Commercially available PbBr₂ (99.9%) and $C_8H_{17}NH_3Br$

^{*} Corresponding author. Tel.: +81468413810x3667; fax: +81468445910. E-mail address: nkita@nda.ac.jp (N. Kitazawa).

(95.0%) were used as raw materials. C₈H₁₇NH₃Br was washed with diethyl ether to remove impurities. A simple vacuum chamber was used as a deposition apparatus. The chamber is attached to a vacuum system, two-independent thermal evaporation sources, a shutter and a substrate holder. Background pressure of the vacuum chamber was about 8×10^{-6} Torr. The thermal evaporation source consists of a quartz cell $(10 \times 10 \times 40 \,\mathrm{mm}^3)$ in size) coiled with a tantalum wire. First of all, PbBr2 particles were deposited on SiO₂ glass and on Si (100) substrates by vapor deposition. The chamber pressure was adjusted to about 1.5×10^{-5} Torr. Deposition time of PbBr₂ (denoted as t_1 hereafter) was fixed at 60 s. Next. PbBr₂ particles were exposed to C₈H₁₇NH₃Br vapor for growing of (C₈H₁₇NH₃)₂PbBr₄ films. Exposure time (denoted as t_2 hereafter) was varied from 0 to 600 s. The crucible temperature and chamber pressure was adjusted to about $130\,^{\circ}\text{C}$ and 5.0×10^{-5} Torr, respectively. It should be noted that the substrate temperature was kept at room temperature during deposition.

The film thickness was measured using a surface profiler (Veeco, Dektak 3). The film thickness depends on the deposition time of PbBr₂. The film thickness was approximately 20 nm when t_1 was 60 s.


Samples were characterized with X-ray diffraction (XRD, Rigaku RINT-2500 X-ray diffractometer) with a monochromatic CrK α radiation (20 kV, 10 mA). Surface morphology of the sample was observed with an atomic force microscope (AFM, Nanoscope III, Digital Instruments) in atmospheric pressure. Temperature dependence visible–UV optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra were measured with spectrophotometers (JASCO V-570 Spectrophotometer and Perkin-Elmer LS-50B Spectrophotometer) equipped with a liquid helium cryostat. Time-resolved PL spectra of the sample were measured with a streak camera (Hamamatsu C4334 Streakscope) by a single photon counting technique at 6 K. A N_2 laser (USHO, KEC-160) was used as an excitation source. The repetition rate was $10\,\text{Hz}$ and the full-width at half-maximum of the laser pulse was approximately $800\,\text{ps}$.


3. Results

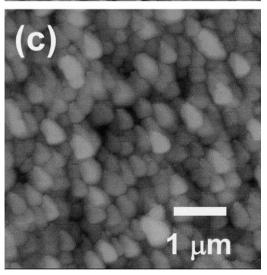

3.1. Thin film formation

Fig. 1 shows AFM images of as-synthesized samples. Exposure time (t_2) was (a) 0, (b) 120 and (c) 600 s, respectively. Deposition time of PbBr $_2$ (t_1) was fixed at 60 s. Marked difference is observed for the samples depending on the period of t_2 . The unexposed sample (a) shows a large number of PbBr $_2$ particles throughout the substrate surface. The average particle size was about 100 nm in diameter. When the period of t_2 was 120 s, the substrate surface of the sample (b) is fully covered with nanometer-sized rodlike particles. The sample (c) is composed of submicron-sized particles with distinct shape.

X-ray diffraction patterns of the samples are shown in Fig. 2. The period of t_1 was 60 s and that of t_2 was (a) 60, (b) 120, (c) 240 and (d) 600 s, respectively. The samples (a) and (b) show an intense and narrow Bragg reflection and much weaker ones with d-spacing of 20.9, 10.5, 7.0, 5.3, 4.2 and 3.5Å, respectively. The corresponding peaks can be indexed as (002l) (l=1–6) reflections of $(C_8H_{17}NH_3)_2PbBr_4$ with a unit cell parameter, c=42.1Å. The estimated value was the same as our previous data (c=42.1Å, $t_1=150$ s, $t_2=600$ s) [20]. No diffuse scattering associated with an amorphous phase is observed. These results lead us to an important suggestion that the film fabricated by the two-step growth process is a single phase and highly oriented, with the c-axis perpendicular to the substrate surface. However,

Fig. 1. AFM images of as-synthesized samples. Exposure time (t_2) is (a) 0, (b) 120 and (c) 600 s, respectively.

the samples (c) and (d) show other Bragg reflections with d-spacing of 24.6, 12.3 and 8.3Å, respectively. These peaks can be indexed as (0 0 l) (l = 1–3) reflections of C₈H₁₇NH₃Br with the unit cell parameter, c = 24.7Å.

Download English Version:

https://daneshyari.com/en/article/5403124

Download Persian Version:

https://daneshyari.com/article/5403124

Daneshyari.com