EI SEVIER

Contents lists available at SciVerse ScienceDirect

Microelectronic Engineering

journal homepage: www.elsevier.com/locate/mee

Accelerated Publication

Ge metal-oxide-semiconductor devices with Al₂O₃/Ga₂O₃(Gd₂O₃) as gate dielectric

L.K. Chu^a, T.H. Chiang^a, T.D. Lin^{a,d}, Y.J. Lee^a, R.L. Chu^a, J. Kwo^{b,c,*}, M. Hong^{d,*}

- ^a Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- ^b Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- ^c Center for Condensed Matter Science, National Taiwan University, Taipei 10617, Taiwan
- ^d Department of Physics and Graduate Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan

ARTICLE INFO

Article history: Received 12 September 2011 Received in revised form 12 October 2011 Accepted 31 October 2011 Available online 10 November 2011

Keywords: High- κ dielectric Germanium EOT MOS

ABSTRACT

Ga₂O₃(Gd₂O₃) [GGO] 3.5 nm-thick, with an *in situ* Al₂O₃ cap 1.5 nm thick, has been directly deposited on Ge substrate without employing interfacial passivation layers. The equivalent oxide thickness (EOT) of the gate stack is 1.38-nm. The metal-oxide-semiconductor (MOS) capacitors using Al₂O₃/GGO as the gate dielectric have given capacitance-voltage characteristics with frequency dispersions of \sim 4% at accumulation (10 kHz-1 MHz) and frequency dependent flat-band voltage shift (\sim 30 mV). The dielectric constant of the GGO remains at 14–15. Furthermore, the TiN/Al₂O₃/GGO/Ge pMOSFET with a gate length of 1 μm has given a saturation drain current density, a maximum transconductance and a field-effect hole mobility of 800 μA/μm, 423 μS/μm, and 300 cm²/V s, respectively.

© 2011 Elsevier B.V. All rights reserved.

When channel materials other than Si are considered to enhance the switching speed of metal-oxide-semiconductor (MOS) transistors, Ge has always been one viable candidate due to its higher carrier mobility than that of Si. Achieving a high-quality interface between high κ dielectrics and Ge is extremely challenging, but is a must to realize high-performance MOS devices. Employing interfacial passivation layers (IPLs) of GeON [1], SiO₂/Si [2], and GeO_2 [3,4] prior to the high κ dielectrics deposition has led to Ge MOS devices with good performance. Particularly, those using GeO_2 have exhibited a low interfacial state of density (D_{it}) and high carrier mobility. However, degradation of GeO₂/Ge interface and diffusion of Ge into the bulk high κ 's occurs as GeO₂ becomes thinner, leading to increased defect density; this and relatively low permittivity of GeO_2 (\sim 7) may hinder further scaling of the capacitance equivalent thickness (CET)/equivalent oxide thickness (EOT) [4]. For a technology beyond Si CMOS, a $D_{it} \leq low$ 10¹¹ cm⁻² eV⁻¹ and a CET/EOT value below 1 nm are adamantly

Among approaches without IPLs of depositing high- κ 's (HfO₂ [5], Y₂O₃ [6], CeO₂ [7], La₂O₃ [8,9], and Ga₂O₃(Gd₂O₃) [GGO], [10,11]) on Ge(100) in ultra high vacuum (UHV), GGO/Ge has shown good thermal stability withstanding high-temperature anneals at least to 500 °C, exhibiting an atomically abrupt oxide/semiconductor interface with minimized Ge inter-diffusion [12]. Low D_{it} 's of $\leqslant 3 \times 10^{11}$ cm⁻² eV⁻¹ were extracted around the

E-mail addresses: raynien@ntu.edu.tw (J. Kwo), mhong@phys.ntu.edu.tw (M. Hong).

mid-gap after a CF_4/O_2 plasma treatment, consistent with the measured high Fermi-level movement efficiency of 80% [13].

In this letter, we have further reduced GGO thickness to achieve sub-nm CET and studied the GGO/Ge MOS device performance. A GGO 3.5 nm-thick with an in situ Al $_2$ O $_3$ cap (\sim 1.5 nm) for MOS capacitors (MOSCAPs) has given a total EOT of 1.38 nm, attaining a 0.96 nm CET in GGO. A 1 μ m (gate length) MOS field-effect-transistor (MOSFET) has exhibited excellent electrical performance of a saturation drain current density of 800 μ A/ μ m, a maximum transconductance of 423 μ S/ μ m, and a field effect hole mobility of 300 cm 2 /V s. We showed that the device performances of the Ge pMOSFET based on GGO without IPL as the gate dielectric, compare favorably with those using IPLs.

After dipped in 2% diluted HF solution and rinsed in de-ionized water, 2-in. n-type Ge(100) wafers (Sb-doped) with a resistivity of $0.31-0.34 \Omega$ cm were immediately loaded into a UHV multi-chamber growth/characterization system. By annealing to \sim 450–500 °C, an atomically ordered Ge surface free of contaminations and residual native oxides was attained, as confirmed by a (2×2) reconstructed reflection high energy electron diffraction (RHEED) pattern and characterized by in situ X-ray photoelectron spectroscopy (XPS). GGO and the subsequent Al₂O₃ cap were electronbeam evaporated from the oxide targets at room temperature in sequence, with the detailed oxide growth given previously [6,11]. Post deposition treatments (PDTs), using a $CF_4 + O_2$ plasma treatment followed by nitrogen annealing (500 °C for 5 min), has improved the GGO and GGO/Ge interfacial quality [12,13]. Sputter-deposited TiN was utilized as the metal gate. The process flows for fabricating the MOS devices were described elsewhere

^{*} Corresponding authors.

[11,13]. Agilent 4284 and 4156C were used for measuring capacitance–voltage (C-V) and current–voltage (I-V) characteristics, respectively.

After PDTs, the GGO/Ge and its interface remain intact, with the electronic/chemical characteristics investigated using synchrotron radiation photoemission [14], and the microstructures studied by high-resolution transmission electron microscopy (HR-TEM) (Fig. 1(a)). The quality of the gate stack and the GGO/Ge interface was also evaluated using C-V curves (shown in Fig. 1(b)) from the MOSCAPs (inset of Fig. 1(d)). The C-Vs exhibit small frequency dispersion at accumulation and negligible frequency-dependent flat-band voltage shift. In the inversion region, the measured capacitance responds well to the frequencies, i.e. increased capacitance with decreased frequencies. The value of the measured transition frequency (f_t) of ~10 kHz, defined as the frequency where the capacitance is in the middle of maximal and minimal capacitances, is in the same range of the reported value of \sim 6 kHz [15]. The slightly higher f_t in this work may be attributed to the lower D_{it}'s. The deviation observed from the C-V in the accumulation region at 1 kHz is due to the gate leakage. The C-V hysteresis at 1 MHz was shown in the inset of Fig. 1(c), where the voltage shift between forward and reverse sweeping at flat-band capacitance is \sim 50 mV. A small frequency dependent flat-band voltage ($V_{\rm fb}$) shift (10 kHz-1 MHz) of \sim 30 mV was attained, suggesting low D_{it} 's near the mid-gap energy. A frequency dispersion of ~4% (10 kHz-1 MHz) at accumulation indicates that the interfacial traps are not significant in the upper half of the bandgap [16]. The minor frequency dispersions in both accumulation and depletion regions are in good agreement with the low $D_{\rm it}$'s of $\sim 10^{11}\,{\rm cm}^{-2}\,{\rm eV}^{-1}$ from mid-gap towards conduction band edge, obtained by conductance method carried out from room temperature to 77 K [16].

A capacitance equivalent thickness (CET) of 1.69 nm is extracted from the 1 MHz oxide capacitance (C_{ox}), leading to a κ value of GGO of \sim 14.3 (using a previously calibrated κ of Al₂O₃ of 8). Taking

the quantum mechanical behavior of the carriers into consideration, the EOT of Al₂O₃/GGO was then determined using the NCSU CVC software; the physical oxide thickness, $V_{\rm fb}$, and substrate doping of the Al₂O₃/GGO/Ge were used to fit the experimental C-V data [17]. Fig. 1(c) shows the experimental and the modeling C-V curves at high and low frequencies, revealing an EOT of 1.38 nm for the bi-layer dielectrics. After subtracting the CET contribution of Al $_2O_3$, i.e. $\kappa_{SiO_2}/\kappa_{Al_2O_3}\times 1.5~\text{nm}\sim 0.73~\text{nm}$, GGO has a CET of around 0.96 nm. The gate leakage current density (J_g) is also plotted as a function of the electric field (E) as shown in Fig. 1(d). At a gate voltage (V_g) of V_{fb} (0.4 V) + 1 V, J_g is $5.5 \times 10^{-3} \text{ A/cm}^2$, which is about two orders of magnitude higher than that in the sample with only nitrogen annealing at 500 °C for 5 min (not shown). The increase in J_g may be due to the damage caused by the reactive plasma process. Nevertheless, J_g exhibits 3-4 orders of reduction compared to that for SiO₂/Si with the same EOT [18]. Compared to the previous results with thicker GGO lavers (>10 nm) [11.13]. where a clear soft breakdown field at ± 1-2 MV/cm is observed, the absence of this in Fig. 1(d) indicates that the leakage from the tunneling current, which takes place even at a small electric field due to the thin gate dielectrics.

The drain current density $(I_{\rm d})$ vs drain voltage $(V_{\rm d})$ of the TiN/Al₂O₃/GGO/Ge pMOSFET with 1- μ m gate length $(L_{\rm g})$ and 10- μ m gate width $(W_{\rm g})$ is shown in Fig. 2(a). The measured data are presented as the dotted lines, indicating significant off-state leakages, i.e. linear increase of $I_{\rm d}$ with increased $V_{\rm d}$ at $V_{\rm g}$ = 0. The off-state leakage comes from the source/drain region, which requires further optimization of the implantation/activation process for improvement. After deducting the off-state current, as shown in the solid lines in Fig. 2(a), a saturation $I_{\rm d}$ of 670 μ A/ μ m at a $V_{\rm g}$ of -2 V has been attained. As $V_{\rm g}$ is further increased to -2.5 V, an $I_{\rm d}$ of \sim 800 μ A/ μ m has been achieved, along with a maximum transconductance $(g_{\rm m})$ of 423 μ S/ μ m at a $V_{\rm g}$ of -0.9 V, as shown in Fig. 2(b). A maximum hole mobility, extracted from the linear

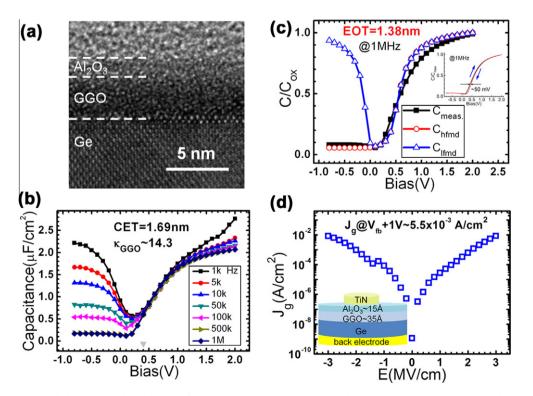


Fig. 1. (a) HR-TEM micrograph of $Al_2O_3/Ga_2O_3(Gd_2O_3)/Ge(100)$ after 20 s $CF_4 + O_2$ plasma treatment and 500 °C – 5 min nitrogen annealing. (b) C-V characteristics of the corresponding $TiN/Al_2O_3(1.5 \text{ nm})/Ga_2O_3(Gd_2O_3)(3.5 \text{ nm})/n$ -Ge MOSCAP. (c) Measured C-V data at 1 MHz and the modeling curve at high and low measurement frequencies. The inset shows the C-V hysteresis at 1 MHz. (d) The corresponding J_g-E curve.

Download English Version:

https://daneshyari.com/en/article/540319

Download Persian Version:

https://daneshyari.com/article/540319

<u>Daneshyari.com</u>