Journal of Luminescence 129 (2009) 430-433

Contents lists available at ScienceDirect

Journal of Luminescence

journal homepage: www.elsevier.com/locate/jlumin

Synthesis and optical properties of KZnLa_{0.99}Nd_{0.01}(VO₄)₂ triple vanadate(V)—New promising laser materials

Marcin Sobczyk*

Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, Wrocław 50-383, Poland

ARTICLE INFO

Article history: Received 6 July 2008 Received in revised form 29 October 2008 Accepted 4 November 2008 Available online 7 December 2008

PACS: 78.55.-m

Keywords: Synthesis Absorption spectra Luminescence spectra Lifetimes Nd³⁺ Vanadates

1. Introduction

LnVO₄ (Ln-trivalent lanthanide ions) are well-known and popular non-linear materials. The neodymium ions doped into series of orthovanadates (V) YVO₄, GdVO₄ and $Y_{1-x}Gd_xVO_4$ are excellent diode-pumped laser materials as they have good properties, such as, large absorption as well as emission crosssection, water resistance, hardness, etc. Difference of ionic radii of Y³⁺ and Nd³⁺, however, strongly limits Nd concentration in the YVO₄ laser crystals. This problem is not observed when Nd³⁺ substitutes La³⁺ ions. It is very interesting that the fluorescence lifetimes of ${}^{4}F_{3/2}$ laser levels of Nd³⁺ ion-doped LaVO₄ is longer $(137 \,\mu s)$ than that in the other Nd³⁺-doped LnVO₄ crystals (where Ln = Y, Gd, Lu) [1,2]. In this work the synthesis of triple orthovanadate(V), KZnLa_{0.99}Nd_{0.01}(VO₄)₂, and its optical properties are presented. The recorded lifetime of ⁴F_{3/2} excited level was about twice longer than those recorded for Nd3+-doped laser crystals LaVO₄ [2], YVO₄ [3,4], GdVO₄ [5].

doi:10.1016/j.jlumin.2008.11.020

ABSTRACT

In an attempt to find a neodymium–vanadate system with long lifetime of ${}^{4}F_{3/2}$ level and relatively strong ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ emission for laser applications, the optical properties of Nd³⁺ in a new KZnLa(VO₄)₂ host is reported. The crystalline samples were obtained at 900 °C in air. The samples were crystallized in monoclinic system and were isostructural with KZnLa(PO₄)₂. KZnLa_{0.99}Nd_{0.01}(VO₄)₂ strongly emits in the near infrared range with the maxima at 871.6 and 1057 nm upon excitation through the ${}^{4}F_{5/2}$ level (808 nm) or by the charge transfer bands of VO₄^{3–}. The lifetime of ${}^{4}F_{3/2}$ level of Nd³⁺ ion is larger than that observed in other neodymium–vanadates systems.

© 2008 Elsevier B.V. All rights reserved.

2. Experimental

The chemicals used were K_2CO_3 , ZnO, NH_4VO_3 (all of analytical grade), La_2O_3 and Nd_2O_3 (99.999%). The starting materials were mixed together stoichiometrically and placed in a platinum crucible; heated in an electric furnace for 24 h at 300 °C and next 24 h at 900 °C in air. The obtained powders were slightly yellow.

The X-ray powder diffractograms of the products were recorded on a DRON-2 X-ray diffractometer using Ni-filtered copper-radiation ($\lambda = 1.5418$ Å). The analysis was performed in the $2\theta = 10-120^{\circ}$ range and with 0.05° step. The unit cell parameters were obtained by least-squares fitting of all the observed reflections. For this purpose, the Crysfire Powder Indexing System and Chekcell Graphical Powder Indexing Cell and Space Group Assignent software were applied [6]. The powder density was determined with a pycnometer using carbon tetrachloride (CCl₄).

The infra-red spectrometer (model BRUKER 113v FTIR) was used to measure the sample IR spectrum covering the wavenumber range $4000-400 \text{ cm}^{-1}$ with KBr as diluent.

Absorption spectra of KZnLa(VO₄)₂:Nd³⁺ pellet were recorded on a Cary 5E spectrometer in the $3800-50,000 \text{ cm}^{-1}$ range at room temperature. Luminescence spectra were obtained using laser diode (808 nm) and GDM monochromator with a spectral bandwidth of 0.5 cm^{-1} . Luminescence decay curves were recorded on a Tektronix TDS 3052 digital oscilloscope following the

^{*} Tel.: +48 71 3757333; fax: +48 71 3282348. *E-mail address:* marcin@eto.wchuwr.pl

^{0022-2313/\$ -} see front matter © 2008 Elsevier B.V. All rights reserved.

Table 1 Observed and calculated d spacing and observed relative intensities for KZnLa(VO₄)₂.

-											
h	k	1	d _{obs}	d _{calc}	I/I ₀	h	k	1	d _{obs}	d _{calc}	I/I ₀
2	0	0	3.3986	3.4058	61	0	2	3	1.8611	1.8623	9
1	2	0	3.2065	3.2125	100	3	2	2	1.8399	1.8427	22
0	2	1	3.1620	3.1780	10	3	0	3	1.8159	1.8174	16
2	1	0	3.0974	3.0854	14	1	3	2	1.7958	1.7992	35
2	1	1	3.0765	3.0779	20	ī	4	0	1.7572	1.7597	16
ī	2	1	3.0356	3.0291	7	3	2	1	1.7447	1.7468	4
0	1	2	2.9666	2.9683	85	ī	4	1	1.7294	1.7277	3
1	2	1	2.7610	2.7509	5	4	1	1	1.7144	1.7124	5
2	0	2	2.7283	2.7261	26	4	0	2	1.6967	1.6979	15
2	1	2	2.5546	2.5532	32	4	1	0	1.6571	1.6582	15
1	1	2	2.5062	2.5141	29	ī	1	4	1.6381	1.6380	9
ī	2	2	2.4340	2.4368	70	0	0	4	1.6222	1.6251	21
3	0	1	2.3364	2.3382	7	2	1	4	1.5990	1.5991	20
ī	3	0	2.2907	2.2876	4	2	3	3	1.5839	1.5826	8
0	3	1	2.2685	2.2751	23	3	3	1	1.5406	1.5396	5
3	1	1	2.2308	2.2264	34	4	2	2	1.5360	1.5390	4
2	2	1	2.1893	2.1907	17	2	4	2	1.5132	1.5145	7
3	1	0	2.1642	2.1677	6	2	2	4	1.4956	1.4947	7
2	0	2	2.0971	2.0981	5	3	2	2	1.5222	1.5189	4
2	1	2	2.0129	2.0161	47	3	4	1	1.4356	1.4370	4
3	0	1	1.9878	1.9906	6	3	4	0	1.4201	1.4208	14
2	3	1	1.9755	1.9755	14	ī	3	4	1.3811	1.3822	9
0	3	2	1.9474	1.9455	46	0	4	3	1.3938	1.3943	29
3	2	0	1.9241	1.9269	31	3	4	1	1.3447	1.3438	12
1	2	3	1.9088	1.9064	9	Ź	5	1	1.3380	1.3391	25

excitation by a Continuum Surelite I optical parametric oscillator (OPO), pumped by a third harmonic of a Nd:YAG laser and detected by a S-20 photomultiplier.

3. Results and discussion

The X-ray examination of KZnLa(VO₄)₂ and Nd³⁺:KZnLa(VO₄)₂ powders revealed presence of a single phase. The powder pattern of sample was indexed on the basis of a monoclinic cell, P2₁/n space group, with the lattice parameters: a = 7.045(1), b = 7.283(1), c = 6.722(1)Å, $\beta = 104.85$, and V = 333.4Å³, respectively. For LaVO₄ the crystallographic parameters are: a = 7.047(1), b = 7.286(1), c = 6.725(1), $\beta = 104.85$, and V = 333.8Å³, respectively [7]. The observed and calculated *d* spacings and observed relative intensities are listed in Table 1. The calculated and measured densities are equal to 4.713 and 4.524 g cm⁻³, respectively. The XRD shows that KZnLa(VO₄)₂ has unit cell dimensions very similar to monoclinic LaVO₄ and LaPO₄ [7,8] and is isomorphous with KMLa(PO₄)₂ (where M = Zn or Mg) triple phosphates [9,10]. With 1 mol% activated Nd³⁺ ions of La³⁺, there has not been significant influence on the structure of the matrices studied.

Infrared spectra of monoclinic lanthanide phosphates were studied in detail and reported in Refs. [10,11]. The IR spectra of KZnLa(VO₄)₂ and KZnLa_{0.99}Nd_{0.01}(VO₄)₂ are similar to the monoclinic LaPO₄, KMgLa(PO₄)₂ and KZnLa(PO₄)₂, respectively [10–12]. For the monoclinic forms of phosphate and their orthovanadate(V) analogues with C_s site symmetry of the PO₄ and VO₄ groups usually four bands appear in the v_4 region (460–530 cm⁻¹) and five or six bands in the v_3 region (750–850 cm⁻¹). The observed peaks are shown in Fig. 1 together with their assignments listed in Table 2.

Fig. 2 shows the room-temperature absorption spectrum of the Nd³⁺-doped KZnLa(VO₄)₂ powder disk. Free Nd³⁺ ion has a 4f³ configuration with a ⁴I_{9/2} ground state level. The Nd³⁺ ion occupy the position of La³⁺ ion with a low site symmetry (C_s) and ⁴I_{9/2} level splits into five Kramers doublets. In the 3800–20,000 cm⁻¹ spectral range, relatively sharp and well-separated bands of

Fig. 1. IR spectrum of KZnLa(VO₄)₂ in the KBr pellet at room temperature.

Table 2Infrared spectra of KZnLa(VO4)2, KMgLa(PO4)2 and LaPO4.

Ref.	KZnLa(VO ₄) ₂ This work	KMgLa(PO ₄) ₂ [10]	LaPO4 [11]
Symmetry			
v_2	436	494	487
<i>v</i> ₄	462	530	532
	475	558	559
	508	572	575
	524	617	621
v ₁	640	948	946
V3	757	988	980
	778	1006	1010
	804	1030	1025
	816	-	1053
	835	1069	1075
	847	1086	1087

Fig. 2. Room-temperature absorption spectrum of the Nd³⁺:KZnLa(VO₄)₂ pellet.

Download English Version:

https://daneshyari.com/en/article/5403270

Download Persian Version:

https://daneshyari.com/article/5403270

Daneshyari.com