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a b s t r a c t

Internal conversion is the dominant relaxation channel from higher lying excited states in molecular

crystals and involves the transfer of energy from the electronic system to the lattice. In this work, we

present results from simulations of the nonradiative relaxation process with an emphasis on both intra-

and interband transitions. We find the internal conversion process to be strongly nonadiabatic and the

associated relaxation time in the case of large energy excitations to be limited by the transitions made

between states of different bands.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, impressive progress has been made within
the field of organic optoelectronics with commercial appli-
cations already in the market. However, in order to fully
explore the possibilities of the organic materials and to further
improve device performance a fundamental understanding of the
mechanisms that govern excitation dynamics and charge carrier
transport is needed. Limiting further discussions to the first of
these topics, this subject has been investigated in great detail in
conventional semiconductors, in particular, in quantum-well
structures [1,2], and to some extent also in p-conjugated polymers
and molecular materials. Although practical devices are likely to be
produced from disordered polycrystalline films, high purity crystals
are required for studies of the intrinsic dynamics, since, otherwise,
trapping of excitons to impurities can dominate the dynamical
process. In particular, a-hexathiophene [3,4], rubrene [5], and
pentacene [6,7] have been extensively studied and are considered
to be representative model systems for p-conjugated molecular
crystals. From such studies the dominant relaxation channel from
higher lying excited states was identified to be internal conversion
[3], i.e., the ultrafast nonradiative relaxation between molecular

states of the same spin multiplicity [8]. This process is followed by
a much slower decay of the (intra)molecular vibrations on the
order of a few picoseconds [4].

As a complement to the experimental studies, there is a need
for a theoretical description of the exciton dynamics involved in
the relaxation process. Such a study should account for the
exchange of energy between electrons and phonons as well as the
dynamics of the phonon and electronic degrees of freedom. In a
recent work, Miyamoto et al. [9] performed real-time simulations
of excited state dynamics in carbon nanotubes. Their method is
based on an ab initio treatment of the system with the ionic
motion determined from direct integration with a force field
obtained from density functional theory. The time evolution of the
charge density is based on Ehrenfest dynamics which requires the
potential energy surface (PES) to be associated with a particular
excited state. In the case of the carbon nanotubes, it was shown
that the influence of the particular excited state on the ion
dynamics is negligible which can justify this approach. This is an
effect of the rigidity of the cylindrical shaped carbon structures
and the relatively weak electron–phonon interaction strength. For
molecular crystals, though, the adiabatic picture breaks down as
the coupling between electronic and nuclear degrees of freedom
facilitates a transition in the region where the PES of the
participating states approach one another energetically [10]. In
studies of these kinds of materials there is therefore a need for a
treatment which includes nonadiabatic effects [11].
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In this work, we perform simulations of nonradiative relaxation
dynamics in molecular systems using single crystal pentacene
as a model system. Our methodology relies on the simultaneous
treatment of electron and ion dynamics, while still allowing for
nonadiabatic transitions to occur. The essential idea is to solve the
time-dependent Schrödinger equation for the electrons, together
with an effective Newton’s equation for the ions, such that the ionic
forces are determined from the generalized Hellmann–Feynman
theorem [11]. Due to the computational costs associated with these
simulations we perform our calculations on finite sized systems.
One drawback of this approach is that the particular size of the
system affects the spacing between the intraband energy levels
and since the rate of internal conversion between two excited
states is expected to increase exponentially with decreasing
difference between the energies of these states [8,12], a quantita-
tive description of the dynamics of the nonradiative relaxation may
therefore not be obtained. Nevertheless, qualitatively we are able to
capture the major effects involved in the process and present a
detailed picture of the process of internal conversion in molecular
crystals.

2. Methodology

In our approach, we obtain the time dependence of the
electronic degrees of freedom from the solutions to the time-
dependent Schrödinger equation

i_j _CðtÞi ¼ ĤeljCðtÞi (1)

and determine the ionic motion in the evolving charge density
distribution by simultaneously solving the lattice equation of
motion within the potential field of the ions:

Mi €ri ¼ �rri
hCðtÞjĤjCðtÞi � l_ri. (2)

Here, ĤðĤelÞ is the (electronic) Hamiltonian of the system, ri and
Mi the position and mass of the ith ion, respectively, and l a
viscous damping constant appended to account for the dissipation
of energy from the system.

Crucial for the efficiency of this method is the representation of
the Hamiltonian. A simple yet powerful model for p-conjugated
polymers was devised already in 1979 by Su et al. (SSH) [13]. In
the SSH model the lattice is treated classically, i.e., the operators of
the lattice displacements are replaced with their expectation
values. This corresponds to expressing the electronic Hamiltonian
in the mean-field approximation [14].

We have expanded the SSH Hamiltonian to encompass for the
higher dimensionality of molecular crystals [15]. In this approach
only the p-electrons are treated explicitly within a tight-binding
model of the form

Ĥel ¼ �
X0

N

i;j¼1
i4j

bijðtÞðĉ
y

i ĉj þ ĉyj ĉiÞ (3)

with resonance integrals

bijðtÞ ¼
b0 � aDrijðtÞ intramolecular;

kSijð0Þ intermolecular:

(
(4)

Here, the intramolecular expression involves a first-order expan-
sion of deviations in bond lengths, Drij, between sites i and j from
that of the undimerized state with uniform bond lengths a. The
intermolecular resonance integrals are obtained within the
Mulliken approximation [16]. The overlap integrals Sij are derived
analytically from the scheme presented in Ref. [17] for the initial
state of the system, whereas the parameter values for the
reference resonance integral b0 and the electron-phonon coupling

constant a are taken directly from Ref. [15]. The prime in Eq. (3)
indicates that the summation runs over nearest neighbors only.

For the molecular dynamics we adopt a classical description of
the s-bond energy. This contribution is expanded to second order
around the undimerized reference state. Supplemented with the
constraint of fixed molecular length [18], we obtain

Ĥlatt ¼
K1

2

X0
N

i;j¼1
i4j

Drij �
2a
K1
hri0 j0 i

� �2

þ
K2

2

X0
uni:ba:

b¼1

ðDybÞ
2, (5)

where only the deviations in bond lengths and bond angles are
accounted for owing to the negligible contributions from the
torsional degrees of freedom of the systems discussed in this
work. Here, K1 and K2 are harmonic force-constants and hri0 j0 i

denotes the mean electron density. All summations in Eq. (5)
involve unique geometrical variables Drij and Dyb corresponding
to alternations in bond lengths and bond angles, respectively,
from the undimerized reference state. Also taking into account the
kinetic energy of ionic motion, Ekin ¼ ð1=2Þ

PN
i¼1Mi _r

2
i , the system

Hamiltonian then reads

Ĥ ¼ Ĥel þ Ĥlatt þ
1

2

XN

i¼1

Mi
_̂r2

i . (6)

Eqs. (1), (2), and (6) form a closed system within the mean-field
approximation inherent in the SSH model. We now make the
ansatz rnn0 ðtÞ ¼

PN
p¼1C�npðtÞf pCn0pðtÞ for the density matrix, where

f p is the initial and further on time-independent occupation
number of the pth molecular orbital (MO) and CnpðtÞ are the time-
dependent expansion coefficients of linear combinations of
orthonormal atomic orbitals of the form

jcpðtÞi ¼
XN

n¼1

CnpðtÞjfni. (7)

CipðtÞ are then normalized solutions of the following equation (see
Appendix A.1):

i_ _CipðtÞ ¼ �
X0

N

j¼1

bijðtÞCjpðtÞ. (8)

Using the Hellmann–Feynman theorem for the ionic forces, Eq. (2)
then reads (see Appendix A.2)

Mi €ri ¼ �
XN

p¼1

f p

XN

n;n0¼1

C�npðtÞhfnjrri
Ĥjfn0 iCn0pðtÞ � l_ri. (9)

For the later analysis of the electronic relaxation dynamics it is
useful to express the normalized time-dependent molecular
orbitals, jcpðtÞi, in a basis of instantaneous eigenfunctions, jjqi

[19]. Expanding jjqi in the same basis as the time-dependent
solutions (see Eq. (7))

jjqi ¼
XN

n00¼1

Bn00qjfn00 i (10)

with expansion coefficients, Bn00q, obtained from the time-
independent Schrödinger equation �

P0N
j¼1bijðtÞBjq ¼ �qBiq (see

Appendix A.3), we obtain, at each time step t, a relationship
between the two sets of expansion coefficients in Eqs. (7) and (10)
(see Appendix A.4):

Cn0pðtÞ ¼
XN

q¼1

Bn0qaqpðtÞ, (11)

where the elements aqpðtÞ ¼ hjqjcpðtÞi can be used to define
the time-dependent occupation number of the instantaneous
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