

Journal of Luminescence 119-120 (2006) 28-32

www.elsevier.com/locate/jlumin

Two-photon excitation to 4f⁶5d configuration of Gd³⁺ in LiGdF₄ crystal by KrF excimer laser

D. Lo^a, V.N. Makhov^{b,*}, N.M. Khaidukov^c, J.C. Krupa^d

^aPhysics Department, Chinese University of Hong Kong, Hong Kong SAR, China

^bLebedev Physical Institute, 119991 Moscow, Russia

^cKurnakov Institute of General and Inorganic Chemistry, 119991 Moscow, Russia

^dInstitut de Physique Nucléaire, 91406 Orsay Cedex, France

Available online 30 January 2006

Abstract

The two-photon excitation to high-lying levels of Gd^{3+} via the intermediate 6D_J levels in $LiGdF_4$ and GdF_3 crystals has been studied under pumping by 248 nm radiation from a KrF excimer laser. Luminescence in the UV (204 nm), orange (570–640 nm) and IR (720–810 nm) regions, which is due to ${}^6G_J {}^8S_{7/2}$, ${}^6G_J {}^6P_J$ and ${}^6G_J {}^6I_J$ transitions in Gd^{3+} , respectively, has been observed from the $LiGdF_4$ crystal at room temperature. No radiative transitions from the $4f^7 {}^6G_J$ levels of Gd^{3+} have been detected from the GdF_3 crystal. It was assumed that at low temperatures the two-photon excitation of the $LiGdF_4$ crystal with a KrF laser could result in the observation of short-wavelength upconverted VUV luminescence at \sim 127 nm due to $4f^65d - 4f^78S_{7/2}$ transitions in Gd^{3+} . © 2006 Elsevier B.V. All rights reserved.

PACS: 78.55.Hx; 71.55.Ht; 42.72.Bj

Keywords: 5d-4f and 4f-4f luminescence; Trivalent gadolinium ion; Fluoride crystals; Upconverted UV/VUV luminescence; LiGdF₄; GdF₃

1. Introduction

Wide band-gap crystals doped with rare earth (RE) ions, which exhibit radiative interconfigurational $4f^{n-1}5d-4f^n$ transitions, are well-known solid-state VUV emitters and are considered as promising candidates for laser action in the VUV

range [1]. However, up to now, only 172 nm laser emission from Nd³⁺-doped LaF₃ crystals has been reported for this region [2,3]. The upconversion (two-photon) pumping seems to be more favourable because it is expected that in such pumping schemes the effect of excited state absorption [4] is less important than in the case of one-photon optical pumping. VUV/deep UV upconversion emission sources are also of practical interest, in particular, for sub-micron photolithography.

^{*}Corresponding author. Fax: +70959382251.

E-mail address: makhov@sci.lebedev.ru (V.N. Makhov).

In this context, VUV/UV 4f²5d-4f³ luminescence of Nd³⁺ under two-photon excitation at 355 nm with a pulsed-frequency-tripled Nd:YAG laser for LiYF₄, LiLuF₄, BaY₂F₈ and Na_{0.4}Y_{0.6}F_{2.2} doped with Nd³⁺ [5-7] and under two-photon excitation at 351 nm with a XeF excimer laser for Nd³⁺-doped LiYF₄ [8] has been detected.

Recently, rather short-wavelength VUV luminescence at 125–127 nm, which is due to $4f^65d-4f^7$ interconfigurational transitions in the Gd^{3+} ion, has been discovered in the LiGdF₄ and GdF₃ crystals under one-photon excitation [9]. In the present paper the two-photon excitation to highlying levels of Gd^{3+} in LiGdF₄ and GdF₃ crystals has been studied under pumping by 248 nm radiation from a KrF excimer laser.

2. Experiment

A KrF excimer laser AQX-150 (MPB Technologies Inc.) operating at 248 nm was used for the two-photon excitation experiments. Luminescence emitted from the samples was analyzed by a 0.4 m Czerny–Turner vacuum monochromator (SpectraPro VM-504, Acton Research Corporation) equipped with a gated diode array detector (IVUV-700, Princeton Instruments). The instrumental resolution of the spectrometer was 0.2 nm. The energy in the 25 ns pulse of the KrF laser was 150–170 mJ.

Single crystals of LiGdF₄ and GdF₃ were grown by the Czochralski method as described in Ref. [10]. For the experiments polished cubic samples with a characteristic length of 5 mm were used. All the experiments were performed at room temperature.

3. Results and discussion

Under excitation of the LiGdF₄ crystal by 248 nm radiation from a KrF laser, the UV luminescence is observed (Fig. 1), including the upconverted emission at 204 nm which is due to electronic transitions from the $4f^{7}$ $^{6}G_{J}$ levels to the $4f^{7}$ $^{8}S_{7/2}$ ground state in the Gd³⁺ ion [11]. The presence of the 204 nm emission in the spectrum

Fig. 1. UV emission spectrum of the LiGdF₄ crystal excited by 248 nm radiation from a KrF excimer laser at 300 K. The assignments of emission lines to corresponding $4f^7-4f^7$ transitions in the Gd³⁺ ion are shown.

undoubtedly evidences that two-photon excitation to high-lying Gd³⁺ levels takes place in the LiGdF₄ crystal under KrF laser pumping. Radiative transitions from low-lying levels within Gd³⁺4f⁷ configuration, namely from ⁶D_I, ⁶I_I and ⁶P₁ to the ground state, are also observed in the spectrum. As expected, the most intense emission is observed at 311 nm from the lowest excited Gd³⁺ ⁶P₁ levels separated from the ground state by the gap \sim 32,000 cm⁻¹. The energy gaps between ⁶D_I and ⁶I_I multiplets and between ⁶I_I and ⁶P₁ multiplets are around 2800 cm⁻¹, whereas the cut-off phonon energy for the LiGdF4 crystal is \sim 560 cm⁻¹ [12], i.e. these gaps can be bridged by 5-phonon relaxation process resulting in high enough rate of non-radiative relaxation from the respective levels. The rate of ${}^{6}I_{7/2} \rightarrow {}^{6}P_{1}$ nonradiative relaxation has been estimated to exceed the probability of radiative decay of the ⁶I_{7/2} level to the ground state [13], which results in additional population of the lowest excited ⁶P₁ levels.

In the long-wavelength range, orange (570–640 nm) and IR (720–810 nm) luminescence is also observed under KrF laser excitation (Fig. 2), which is due to 6G_J – 6P_J and 6G_J – 6I_J transitions in Gd³⁺, respectively [11]. These visible and IR emissions as well as the UV (204 nm) luminescence can be observed, in principle, under excitation both to the high-lying $^6G_{7/2}$) and to the Gd³⁺ 6G_J levels (higher than 6G_J) and to the Gd³⁺ 6G_J levels.

Download English Version:

https://daneshyari.com/en/article/5404140

Download Persian Version:

https://daneshyari.com/article/5404140

<u>Daneshyari.com</u>