

Available online at www.sciencedirect.com

Journal of Luminescence 116 (2006) 1-14

www.elsevier.com/locate/jlumin

The effect of pressure on luminescence properties of Cr³⁺ ions in LiSc(WO₄)₂ crystals—Part I: Pressure dependent emission lineshape

Y.R. Shen^a, M. Grinberg^{b,*}, J. Barzowska^b, K.L. Bray^c, J. Hanuza^{d,e}, P.J. Dereń^d

^aHigh Pressure Science and Engineering Center and Department of Physics, University of Nevada, Las Vegas, Nevada 89154-4002, USA

^bInstitute of Experimental Physics, University of Gdańsk, Wita Stwosza 57 80-952 Gdańsk, Poland

^cDepartment of Physics and Astronomy, University of Georgia, Athens, Georgia 30602-2451, USA

^dInstitute of Low Temperature and Structural Research, Polish Academy of science, Wrocław, Poland

^cDepartment of Bioorganic Chemistry, Faculty of Engineering and Economics, Academy of Economics, Wrocław, Poland

Received 11 May 2004; received in revised form 17 December 2004; accepted 15 February 2005 Available online 13 April 2005

Abstract

We report the results of high-pressure studies of spectral properties in Cr^{3+} -doped $LiSc(WO_4)_2$ crystals between ambient pressure and 260 kbar. The effect of pressure on the present system has led to a structural transformation for pressure 60-88 kbar and a low-field \rightarrow high-field spectral transformation of the Cr^{3+} emission for pressure 117-227 kbar. The pressure-induced spectral transformation provided the opportunity to distinguish two distinct Cr^{3+} sites in the host lattice. We have attributed them to the Cr^{3+} ions that occupy the Li^+ and Sc^{3+} sites. For both sites we observed that energy of the 2E excited state of Cr^{3+} was lower than $14,000\,cm^{-1}$ and exhibited pressure-induced red shift of about $-2.5\,cm^{-1}/k$ bar. We have also observed the large inhomogeneous broadening of the $^4T_2 \rightarrow ^4A_2$ and $^2E \rightarrow ^4A_2$ emissions. We have completed a quantitative analysis of the relative emission intensities of the $^2E \rightarrow ^4A_2$ and $^4T_2 \rightarrow ^4A_2$ transitions as a function of pressure and temperature to study the distribution of the crystal field and electron–phonon coupling of the Cr^{3+} in the host lattice. As the result we have recovered a functions that describe the distribution of the energy of 4T_2 state and electron–lattice coupling $(S-\frac{1}{2})\hbar\omega$ in considered material. © 2005 Elsevier B.V. All rights reserved.

PACS: 71.70.-d, 78.55.Hx, 62.50.+p

Keywords: Chromium; High pressure luminescence; Inhomogeneous broadening; Crystal field

^{*}Corresponding author. Tel.: +48 58 5529544; fax: +48 58 3413175. E-mail address: fizmgr@julia.univ.gda.pl (M. Grinberg).

1. Introduction

Since trivalent titanium doped sapphire (Ti³⁺:Al₂O₃) was developed as commercial tunable solid state laser in the red and extended red range (about 700–950 nm), the intensive search for new tunable solid state laser materials capable of operating over extended wavelength ranges in the near-infrared, visible, and ultraviolet portions of the spectrum has been ongoing [1,2]. Tetravalent chromium (Cr⁴⁺) ions in several host lattices have been discovered as the most promising nearinfrared lasing centers ranging over about 1100–1500 nm [1]. Efficient tunable laser materials in the tuning range between 950 and 1100 nm have not yet been found to date. Trivalent chromium (Cr³⁺)-doped materials are promising candidates for designing new efficient laser materials over this tuning range principally because low field Cr³⁺ systems have an efficient spin-allowed, vibronic ${}^{4}\text{T}_{2} \rightarrow {}^{4}\text{A}_{2}$ emission whose energy is proportional to crystal field strength (Dq) and varies widely over host lattices [2]. A family of double tungstates and molybdates $[M^IM^{III}(M^{VI}O_4)_2$, where M^I = alkali earth metals; M^{III} = transition metals or rare earths and $M^{VI} = Mo$ or W] are found to exist in polymorphic forms [3–7] and to have promising optical, antiferroelectric and ferroelastic properties [8-16]. They have been already shown to be excellent host materials for optical activators like transition metal and rare earth ions [8-14]. Trivalent chromium (Cr3+) ions in some compounds within this family are observed to have either a narrow structured, high-field ${}^{2}E \rightarrow {}^{4}A_{2}$ emission or a broadband, low-field ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ emission between 700-1100 nm [8-10]. This fact indicates that the Cr3+ luminescence varies very strongly with the MI and MIII cations and the lattice structure of M^IM^{III}(M^{VI}O₄)₂ and therefore can be manipulated chemically. Detailed luminescence studies of Cr3+-doped MIMIII(MVIO₄)₂ materials have not been reported to date and are needed to establish a systematic propertystructure relation.

Previous high-pressure tuning spectroscopy studies on Cr³⁺-activated materials have clearly demonstrated that pressure is an irreplaceable and powerful tool for quantifying the extent of electronic mixing between the 2E and 4T_2 states of the Cr^{3+} ion [17–19], for identifying the irresolvable multi-site behavior of broadly emitting Cr^{3+} systems [20,21], and for characterizing the inhomogeneous distribution of Cr^{3+} ions in a disordered crystal or a glass host [22]. Since pressure induces the 4T_2 – 2E level crossing (at high pressure the broad emission band related to the 4T_2 – 4A_2 transition is replaced by the sharp lines related to the 2E – 4A_2 transition) many of the important characteristics of the Cr^{3+} emission may be resolved and systematically investigated through high-pressure experimentation.

The objective of this paper is to apply high pressure to a Cr3+-doped LiSc(WO₄)₂, to study the effect of pressure on luminescence properties of Cr³⁺ in a representative tungstate host lattice and to initiate development of a structure-property relation for the general Cr³⁺-activated M¹M^{1II} (MVIO₄)₂ system. Ambient condition luminescence experiments on three Cr3+-doped tungstates, LiSc(WO₄)₂, LiIn(WO₄)₂, and NaIn(WO₄)₂ indicate that Cr³⁺:LiSc(WO₄)₂ exhibits the low field, broadband ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ emission over 900–1100 nm and is therefore good candidate for tunable laser operation. The effect of pressure on the emission properties of Cr3+:LiSc(WO₄)₂ has been investigated briefly in our previous paper [23], where a pressure induced low- to high-field transformation of the Cr³⁺ ions has been demonstrated. In this paper we focus on the analysis of inhomogenity of the Cr³⁺ system, specifically considering the distribution of the energy of the ⁴T₂ state and electron-lattice coupling strength.

2. Sample and experiment

2.1. Crystal growth and structure

Cr³⁺-doped LiSc(WO₄)₂ single crystal doped with 0.5 wt% of Cr³⁺ were grown by a melting method developed by Klevtsov et al. [4]. The details were described in our previous paper [23]. LiSc(WO₄)₂ crystallizes in a monoclinic structure (C2/ $c = C_{2h}^6 z = 4$) with a unit-cell parameters: $a = 9.52 \,\text{Å}, b = 11.54 \,\text{Å}, c = 4.93 \,\text{Å}, \beta = 91.2^\circ,$ [4]. The crystal lattice of LiSc(WO₄)₂ is basically

Download English Version:

https://daneshyari.com/en/article/5404393

Download Persian Version:

https://daneshyari.com/article/5404393

<u>Daneshyari.com</u>