ELSEVIER

Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier.com/locate/jmr

⁷¹Ga-⁷⁷Se connectivities and proximities in gallium selenide crystal and glass probed by solid-state NMR

Hiroki Nagashima ^a, Julien Trébosc ^a, Laurent Calvez ^b, Frédérique Pourpoint ^a, François Mear ^a, Olivier Lafon ^{a,d,*}, Jean-Paul Amoureux ^{a,c,*}

- ^a Univ. Lille, CNRS, UMR 8181, UCCS- Unité de Catalyse et de Chimie du Solide (UCCS), F-59000 Lille, France
- ^b Univ. Rennes, Institut des Sciences Chimiques de Rennes, F-35042 Rennes, France
- ^c Bruker France, F-67166 Wissembourg, France
- d Institut Universitaire de France, 1, rue Descartes, 75231 Paris Cedex 05, France

ARTICLE INFO

Article history: Received 20 March 2017 Revised 5 July 2017 Accepted 20 July 2017 Available online 22 July 2017

Keywords: J-HMQC J-RINEPT D-HMQC Quadrupolar nuclei ⁷⁷Se ⁷¹Ga STMAS-QCPMG

ABSTRACT

We introduce two-dimensional (2D) ⁷¹Ga-⁷⁷Se through-bond and through-space correlation experiments. Such correlations are achieved using (i) the J-mediated Refocused Insensitive Nuclei Enhanced by Polarization Transfer (J-RINEPT) method with 71Ga excitation and 77Se Carr-Purcell-Meiboon-Gill (CPMG) detection, as well as (ii) the J- or dipolar-mediated Hetero-nuclear Multiple-Quantum Correlation (J- or D-HMQC) schemes with 71 Ga excitation and quadrupolar CPMG (QCPMG) detection. These methods are applied to the crystalline β-Ga₂Se₃ and the 0.2Ga₂Se₃-0.8GeSe₂ glass. Such glass leads to a homogeneous and reproducible glass-ceramic, which is a good alternative to single-crystalline Ge and polycrystalline ZnSe materials for making lenses transparent in the IR range for thermal imaging applications. We show that 2D ⁷¹Ga-⁷⁷Se correlation experiments allow resolving the ⁷⁷Se signals of molecular units, which are not resolved in the 1D ⁷⁷Se CPMG spectrum. Additionally, the build-up curves of the *J*-RINEPT and the *J*-HMQC experiments allow the estimate of the ⁷¹Ga-²⁷Se *J*-couplings via one and three-bonds in the three-dimensional network of β -Ga₂Se₃. Furthermore, these build-up curves show that the one-bond ${}^1J_{71\text{Ga-}77\text{Se}}$ couplings in the $0.2\text{Ga}_2\text{Se}_3$ - 0.8GeSe_2 glass are similar to those measured for β-Ga₂Se₃. We also report 2D ⁷¹Ga Satellite Transition Magic-Angle Spinning (STMAS) spectrum of β-Ga₂Se₃ using QCPMG detection at high magnetic field and high Magic-Angle Spinning frequency using large radio frequency field. Such spectrum allows separating the signal of β-Ga₂Se₃ and that of an impurity.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Chalcogenide glasses are technologically important materials that can be suitably designed to exhibit many interesting physical properties including high transparency in the infrared range, low phonon energy, high optical non-linearity, large photo-sensitivity, and high ionic conductivity [1–7]. Beyond the usual systems based on Ge-Sb-Se or Ge-As-Se moieties, one of the pseudo-binary systems that display glass-forming ability over a significant composition range is Ga₂Se₃-GeSe₂ [8]. Previous studies using Raman, X-ray photo-electron (XPS), extended X-ray absorption fine-structure (EXAFS), as well as ⁷⁷Se and ⁷¹Ga solid-state NMR (SS-NMR) spectroscopies have shown that the structures of these gallium

E-mail address: jean-paul.amoureux@univ-lille1.fr (J.-P. Amoureux).

and germanium selenide glasses (denoted GGS hereafter) are composed predominantly of a network of corner-sharing (CS) GaSe₄ and/or GeSe₄ tetrahedra and a small fraction of edge-sharing (ES) GaSe₄ and/or GeSe₄ tetrahedra, in which the Ga, Ge, and Se atoms are covalently bonded to 4, 4, and 2 neighboring atoms, respectively [9-13]. The tetra-coordinated Ga and Ge sites and the dicoordinated Se ones are denoted Ga^{IV}, Ge^{IV} and Se^{II} hereafter. XPS and ⁷¹Ga SS-NMR spectroscopy have demonstrated that the addition of Ga₂Se₃ increases the deficiency in Se and leads to the formation of Ge-Ge bonds and (SeII)3-Ge-Ge-(SeII)3 units, which are distributed in such way that any clustering of these units is avoided [11,12]. Furthermore, Raman spectroscopy and 77Se SS-NMR studies, including two-dimensional (2D) ⁷⁷Se MATPASS/ CPMG (Magic-Angle Turning-Phase Adjusted Spinning Sidebands with Carr-Purcell-Meiboon-Gill detection) experiments, have shown the formation of tri-coordinated Se atoms (Se^{III}) in GGS glasses with high content of Ga₂Se₃ (>25% mol) [12,13]. The

^{*} Corresponding authors at: Univ. Lille, CNRS, UMR 8181, UCCS- Unité de Catalyse et de Chimie du Solide (UCCS), F-59000 Lille, France.

formation of these sites provides another mechanism to accommodate the deficiency in Se atoms. These Se^{III} species mainly replace the Se^{II} ones in the CS GaSe₄ and/or GeSe₄ tetrahedra.

As mentioned above, SS-NMR is a precious tool to characterize the local environment of atoms in GGS glasses. ⁷⁷Se isotope possesses a nuclear spin of 1/2, a gyromagnetic ratio similar to that of ^{29}Si nucleus $(\gamma_{77Se}\approx 0.96\gamma_{29Si}\approx 0.76\gamma_{13C})$ and a low natural abundance, $NA_{77Se} \approx 7.63\%$ [14]. As ²⁹Si nuclei, ⁷⁷Se isotope exhibits long longitudinal relaxation times in solids. Furthermore, ⁷⁷Se NMR resonances are often broad, notably for glasses. Such broadening further reduces the sensitivity since the total integrated intensity is spread over a broad spectral width. Ga element has two stable NMR-active isotopes, 69 Ga and 71 Ga, both with spin-3/2. 69 Ga is more abundant than 71 Ga (NA $_{69}$ Ga \approx 60.4% and NA $_{71}$ Ga - $\approx 39.6\%$), but the latter possesses higher gyromagnetic ratio $(\gamma_{69Ga}\approx 0.96\gamma_{13C}$ and $\gamma_{71Ga}\approx 1.22\gamma_{13C})$ and smaller quadrupole moment (Q_{69Ga} = 17.1 and Q_{71Ga} = 10.7 fm²). Therefore, ⁷¹Ga NMR experiments are more sensitive than ⁶⁹Ga ones. Nevertheless, even for ⁷¹Ga isotope, the quadrupole interaction can broaden the NMR resonance over hundreds of kHz and the detection of these broad powder patterns is often challenging. Finally, the detection of ⁷³Ge nuclei by SS-NMR spectroscopy remains extremely challenging owing to the unfavorable properties of this isotope: low gyromagnetic ratio ($\gamma_{73Ge} \approx 0.14 \gamma_{13C}$), low natural abundance $(NA_{73Ge} \approx 7.76\%)$, high spin value of 9/2, and large quadrupole moment ($Q_{73Ge} = -19.6 \text{ fm}^2$). Nevertheless, ⁷³Ge SS-NMR spectra of germanium selenide glasses have been reported [15].

A major limitation of this study is the lack of resolution of 1D NMR spectra of GGS glasses since the resonances are broaden by the distribution of local environments as well as the anisotropic interactions, such as Chemical Shift Anisotropy (CSA) for ⁷⁷Se nuclei and quadrupole interaction for ⁷¹Ga and ⁷³Ge isotopes. Recently, 2D experiments have allowed the measurement of onebond J-coupling between ⁷⁷Se nuclei in arsenic selenide glasses [16]. Furthermore, it has been shown that the 2D MATPASS/CPMG sequence can improve the resolution of ⁷⁷Se signals for germanium selenide and GGS glasses by separating the isotropic chemical shift and the CSA in two distinct dimensions [13.17]. Nevertheless, to the best of our knowledge, the *J*-couplings between ⁷⁷Se and ⁷¹Ga nuclei have not been measured so far. Similarly, neither through-bond nor through-space ⁷¹Ga-⁷⁷Se hetero-nuclear correlation (J-HETCOR and D-HETCOR, respectively) 2D spectrum has been reported hitherto.

In this article, we introduce such $^{71}\text{Ga-}^{27}\text{Se}$ HETCOR 2D experiments. The sequences are first tested on $\beta\text{-Ga}_2\text{Se}_3$ crystalline sample. Using high-magnetic field (21.1 T), high Magic-Angle Spinning (MAS) frequency, ν_R = 62.5 kHz, and large radio frequency (rf) field we observe for this sample two distinct ^{71}Ga signals, a broad peak and a narrow one of an impurity accounting for 12% of the total signal. Previous SS-NMR studies at lower field, MAS frequency and rf-field have only reported the observation of this narrow peak [12]. We also report a high-resolution ^{71}Ga 2D spectrum of $\beta\text{-Ga}_2\text{Se}_3$ acquired by introducing a Satellite Transition MAS (STMAS) experiment [18,19] using quadrupolar CPMG (QCPMG) detection [20] at 21.1 T and ν_R = 62.5 kHz. The 2D ^{71}Ga STMAS-QCPMG spectrum allows separating the NMR signals of the impurity and $\beta\text{-Ga}_2\text{Se}_3$, but not those of the two Galv sites in $\beta\text{-Ga}_2\text{Se}_3$ [21].

The 2D ⁷¹Ga-⁷⁷Se through-bond spectra are acquired by introducing (i) the Refocused Insensitive Nuclei Enhanced by Polarization Transfer (*J*-RINEPT) experiment [22], with ⁷¹Ga excitation and ⁷⁷Se CPMG detection [16], called ⁷⁷Se-{⁷¹Ga}, as well as (ii) the Hetero-nuclear Multiple-Quantum Correlation (*J*-HMQC) experiment [23], with ⁷¹Ga excitation and QCPMG detection, the ⁷⁷Se signal being indirectly detected, called ⁷¹Ga-{⁷⁷Se}. Both ⁷⁷Se-{⁷¹Ga} *J*-RINEPT-CPMG and ⁷¹Ga-{⁷⁷Se} *J*-HMQC-QCPMG 2D spectra show the expected correlation between the broad ⁷¹Ga

signal of β-Ga₂Se₃ and the ⁷⁷Se^{II} and ⁷⁷Se^{III} signals. Furthermore, those spectra also exhibit a cross-peak between the ⁷¹Ga narrow signal of the impurity and the ⁷⁷Se^{III} signals. Such observation indicates that the impurity mainly contains Se^{III} sites. In addition, by fitting the evolution of the ⁷⁷Se-{⁷¹Ga} *J*-RINEPT and ⁷¹Ga-{⁷⁷Se} *J*-HMQC signals as function of the defocusing and/or refocusing delays, τ and τ' (see Fig. 1), we measure for the first time the one-bond and three-bonds *J*-couplings, denoted ¹*J* and ³*J*, respectively, between ⁷¹Ga isotope and ⁷⁷Se^{III} or ⁷⁷Se^{III} nuclei. The 2D ⁷¹Ga-{⁷⁷Se} through-space spectrum is acquired by introducing the ⁷¹Ga-{⁷⁷Se} dipolar-mediated HMQC experiment (*D*-HMQC) [24,25] with QCPMG detection. The ⁷¹Ga-⁷⁷Se dipolar couplings are reintroduced under MAS by applying the Simultaneous Frequency and Amplitude Modulation (SFAM₁) recoupling [26–28] during the defocusing and refocusing delays. The sensitivity of this through-space correlation experiment is compared to that of through-bond ones.

These 2D ⁷¹Ga-⁷⁷Se *J*- and *D*-HETCOR experiments are then applied to characterize the $xGa_2Se_3-(1-x)GeSe_2$ glass with x = 0.2 (denoted $GGS_{0.2}$ hereafter). The GGS_x glass-ceramics are a good alternative to single-crystalline Ge and polycrystalline ZnSe materials for making lenses transparent in the IR range for thermal imaging applications. The GGS_{0.2} composition leads to a homogeneous and reproducible glass-ceramic using suitable heat treatment over its glass transition temperature. For this sample, the controlled nucleation rate is assumed to be due to a specific phenomenon of phase separation [8]. The same behavior has been observed in sulfide based glasses of the same composition, highlighting the important role of gallium during the nucleation process [11,29]. The obtained glass-ceramics present enhanced mechanical properties, while keeping an excellent transparency in the mid-infrared range. The ⁷¹Ga-⁷⁷Se J- and D-HETCOR 2D spectra permit to resolve and identify molecular units containing Ga and Se atoms in GGS_{0.2} glass. Furthermore, the evolutions of ⁷⁷Se-{⁷¹Ga} *J*-RINEPT and ⁷¹Ga-{⁷⁷Se} *J*-HMQC signals as function of the scalar recoupling delays allow the estimate of the ¹I_{71Ga-77Se} couplings and indicates that the ⁷¹Ga-⁷⁷Se covalent bonds in $GGS_{0,2}$ glass are similar to those of β -Ga₂Se₃.

2. Methods

2.1. NMR methods

2.1.1. Acquiring 71Ga 1D MAS spectra

As seen below, 71 Ga isotope in β -Ga $_2$ Se $_3$ crystal and GGS $_{0.2}$ glass is subject to large quadrupole interactions. In order to improve the spectral resolution, 71 Ga 1D spectra were acquired at high magnetic field, B^0 = 21.1 T, and high MAS frequency, v_R = 62.5 kHz, since for quadrupolar nuclei the resolution is proportional to $(B^0)^2$ and MAS can improve the spectral resolution by a factor of ca. 3–4 by partially averaging the second-order broadening, at least when the spinning sidebands are separated from the center-bands. As seen in Fig. 3b,d, the MAS averaged line-width of the central transition (CT) between energy levels $\pm 1/2$ of 71 Ga nuclei extends over 60 kHz in β -Ga $_2$ Se $_3$ crystal and GGS $_{0.2}$ glass, and hence a high MAS frequency of $v_R \geq 60$ kHz is required.

2.1.2. CPMG and OCPMG

As explained in the introduction, ⁷¹Ga and ⁷⁷Se spectra of GGS glasses exhibit wide powder patterns, which result in low sensitivity. Nevertheless, for these isotopes, the decay of the top of the echo signal for increasing spin-echo delay is often much slower than that of the Free-Induction Decay. Consequently, the sensitivity can be enhanced by acquiring multiple rotor-synchronized echoes in the form of the CPMG scheme for ⁷⁷Se nuclei [16] and

Download English Version:

https://daneshyari.com/en/article/5404483

Download Persian Version:

https://daneshyari.com/article/5404483

<u>Daneshyari.com</u>